Search results
Results from the WOW.Com Content Network
A newton is defined as 1 kg⋅m/s 2 (it is a named derived unit defined in terms of the SI base units). [1]: 137 One newton is, therefore, the force needed to accelerate one kilogram of mass at the rate of one metre per second squared in the direction of the applied force.
≡ 1 kg hundredweight (long) long cwt or cwt ≡ 112 lb av = 50.802 345 44 kg: hundredweight (short); cental: sh cwt ≡ 100 lb av = 45.359 237 kg: hyl; metric slug: ≡ 1 kgf / 1 m/s 2 = 9.806 65 kg: kilogram (kilogramme) kg ≈ mass of the prototype near Paris ≈ mass of 1 litre of water (SI base unit) [8] kip: kip ≡ 1000 lb av = 453.592 ...
The table below lists units supported by {{convert}}.More complete lists are linked for each dimension. For a complete list of all dimensions, see full list of units. ...
Metric prefixes; Text Symbol Factor or; yotta Y 10 24: 1 000 000 000 000 000 000 000 000: zetta Z 10 21: 1 000 000 000 000 000 000 000: exa E 10 18: 1 000 000 000 000 000 000: peta P 10 15: 1 000 000 000 000 000: tera T
In engineering and physics, g c is a unit conversion factor used to convert mass to force or vice versa. [1] It is defined as = In unit systems where force is a derived unit, like in SI units, g c is equal to 1.
For example, the NIST document has 1 square mile = 2.589 988 E+06 square meters. The convert template has 1 square mile = 2,589,988.110336 square meters. Values for the fundamental physical constants come from the NIST Reference on Constants, Units, and Uncertainty , either the 2010 or the 2014 version.
The specific strength is bounded to be no greater than c 2 ≈ 9 × 10 13 kN⋅m/kg, where c is the speed of light. This limit is achieved by electric and magnetic field lines, QCD flux tubes, and the fundamental strings hypothesized by string theory. [citation needed]
The specific weight, also known as the unit weight (symbol γ, the Greek letter gamma), is a volume-specific quantity defined as the weight W divided by the volume V of a material: = / Equivalently, it may also be formulated as the product of density, ρ, and gravity acceleration, g: = Its unit of measurement in the International System of Units (SI) is newton per cubic metre (N/m 3), with ...