enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Factorial - Wikipedia

    en.wikipedia.org/wiki/Factorial

    [39] [40] The factorial number system is a mixed radix notation for numbers in which the place values of each digit are factorials. [41] Factorials are used extensively in probability theory, for instance in the Poisson distribution [42] and in the probabilities of random permutations. [43]

  3. Factorial number system - Wikipedia

    en.wikipedia.org/wiki/Factorial_number_system

    The factorial number system is sometimes defined with the 0! place omitted because it is always zero (sequence A007623 in the OEIS). In this article, a factorial number representation will be flagged by a subscript "!". In addition, some examples will have digits delimited by a colon. For example, 3:4:1:0:1:0! stands for

  4. Double factorial - Wikipedia

    en.wikipedia.org/wiki/Double_factorial

    In mathematics, the double factorial of a number n, denoted by n‼, is the product of all the positive integers up to n that have the same parity (odd or even) as n. [1] That is, n ! ! = ∏ k = 0 ⌈ n 2 ⌉ − 1 ( n − 2 k ) = n ( n − 2 ) ( n − 4 ) ⋯ . {\displaystyle n!!=\prod _{k=0}^{\left\lceil {\frac {n}{2}}\right\rceil -1}(n-2k ...

  5. Falling and rising factorials - Wikipedia

    en.wikipedia.org/wiki/Falling_and_rising_factorials

    These symbols are collectively called factorial powers. [2] The Pochhammer symbol, introduced by Leo August Pochhammer, is the notation (), where n is a non-negative integer. It may represent either the rising or the falling factorial, with different articles and authors using different conventions.

  6. Gamma function - Wikipedia

    en.wikipedia.org/wiki/Gamma_function

    Other extensions of the factorial function do exist, but the gamma function is the most popular and useful. It appears as a factor in various probability-distribution functions and other formulas in the fields of probability, statistics, analytic number theory, and combinatorics.

  7. Floor and ceiling functions - Wikipedia

    en.wikipedia.org/wiki/Floor_and_ceiling_functions

    n > 0 is the number of letters in the alphabet (e.g., 26 in English) the falling factorial = (+) denotes the number of strings of length k that don't use any character twice. n! denotes the factorial of n; e = 2.718... is Euler's number; For n = 26, this comes out to 1096259850353149530222034277.

  8. Stirling's approximation - Wikipedia

    en.wikipedia.org/wiki/Stirling's_approximation

    Comparison of Stirling's approximation with the factorial. In mathematics, Stirling's approximation (or Stirling's formula) is an asymptotic approximation for factorials. It is a good approximation, leading to accurate results even for small values of .

  9. Central composite design - Wikipedia

    en.wikipedia.org/wiki/Central_composite_design

    There are many different methods to select a useful value of α. Let F be the number of points due to the factorial design and T = 2k + n, the number of additional points, where n is the number of central points in the design. Common values are as follows (Myers, 1971):