enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Table of polyhedron dihedral angles - Wikipedia

    en.wikipedia.org/wiki/Table_of_polyhedron...

    The dihedral angles for the edge-transitive polyhedra are: Picture Name Schläfli symbol Vertex/Face configuration exact dihedral angle (radians) dihedral angle ...

  3. Dihedral angle - Wikipedia

    en.wikipedia.org/wiki/Dihedral_angle

    An angle of 0° means the face normal vectors are antiparallel and the faces overlap each other, which implies that it is part of a degenerate polyhedron. An angle of 180° means the faces are parallel, as in a tiling. An angle greater than 180° exists on concave portions of a polyhedron. Every dihedral angle in an edge-transitive polyhedron ...

  4. Regular polyhedron - Wikipedia

    en.wikipedia.org/wiki/Regular_polyhedron

    A regular polyhedron is identified by its Schläfli symbol of the form {n, m}, where n is the number of sides of each face and m the number of faces meeting at each vertex. There are 5 finite convex regular polyhedra (the Platonic solids), and four regular star polyhedra (the Kepler–Poinsot polyhedra), making nine regular polyhedra in all. In ...

  5. Ideal polyhedron - Wikipedia

    en.wikipedia.org/wiki/Ideal_polyhedron

    This fact can be used to calculate the dihedral angles themselves for a regular or edge-symmetric ideal polyhedron (in which all these angles are equal), by counting how many edges meet at each vertex: an ideal regular tetrahedron, cube or dodecahedron, with three edges per vertex, has dihedral angles = / = (), an ideal regular octahedron or ...

  6. Rhombic dodecahedron - Wikipedia

    en.wikipedia.org/wiki/Rhombic_dodecahedron

    Its dihedral angle between two rhombi is 120°. [2] The rhombic dodecahedron is a Catalan solid, meaning the dual polyhedron of an Archimedean solid, the cuboctahedron; they share the same symmetry, the octahedral symmetry. [2] It is face-transitive, meaning the symmetry group of the solid acts transitively on its set of faces.

  7. Polyhedron - Wikipedia

    en.wikipedia.org/wiki/Polyhedron

    The Dehn invariant is not a number, but a vector in an infinite-dimensional vector space, determined from the lengths and dihedral angles of a polyhedron's edges. [44] Another of Hilbert's problems, Hilbert's 18th problem, concerns (among other things) polyhedra that tile space. Every such polyhedron must have Dehn invariant zero. [45]

  8. Dehn invariant - Wikipedia

    en.wikipedia.org/wiki/Dehn_invariant

    Determine the edge lengths and dihedral angles (the angle between two faces meeting along an edge) of all of the polyhedra. Find a subset of the angles that forms a rational basis. This means that each dihedral angle can be represented as a linear combination of basis elements, with rational number coefficients.

  9. Regular dodecahedron - Wikipedia

    en.wikipedia.org/wiki/Regular_dodecahedron

    The regular dodecahedron is a polyhedron with twelve pentagonal faces, thirty edges, and twenty vertices. [1] It is one of the Platonic solids, a set of polyhedrons in which the faces are regular polygons that are congruent and the same number of faces meet at a vertex. [2] This set of polyhedrons is named after Plato.