Search results
Results from the WOW.Com Content Network
The tetrahedral group of order 12, rotational symmetry group of the regular tetrahedron. It is isomorphic to A 4. The conjugacy classes of T are: identity; 4 × rotation by 120°, order 3, cw; 4 × rotation by 120°, order 3, ccw; 3 × rotation by 180°, order 2; The octahedral group of order 24, rotational symmetry group of the cube and the ...
All five have C 2 ×S 5 symmetry but can only be realised with half the symmetry, that is C 2 ×A 5 or icosahedral symmetry. [9] [10] [11] They are all topologically equivalent to toroids. Their construction, by arranging n faces around each vertex, can be repeated indefinitely as tilings of the hyperbolic plane. In the diagrams below, the ...
This is an indexed list of the uniform and stellated polyhedra from the book Polyhedron Models, by Magnus Wenninger.. The book was written as a guide book to building polyhedra as physical models.
C i (equivalent to S 2) – inversion symmetry; C 2 – 2-fold rotational symmetry; C s (equivalent to C 1h and C 1v) – reflection symmetry, also called bilateral symmetry. Patterns on a cylindrical band illustrating the case n = 6 for each of the 7 infinite families of point groups. The symmetry group of each pattern is the indicated group.
There are five fundamental symmetry classes which have triangular fundamental domains: dihedral, cyclic, tetrahedral, octahedral, and icosahedral symmetry. This article lists the groups by Schoenflies notation , Coxeter notation , [ 1 ] orbifold notation , [ 2 ] and order.
The primary face of the subdivision is called a principal polyhedral triangle (PPT) or the breakdown structure. Calculating a single PPT allows the entire figure to be created. The frequency of a geodesic polyhedron is defined by the sum of ν = b + c. A harmonic is a subfrequency and can be any whole divisor of ν.
It follows that all vertices are congruent, and the polyhedron has a high degree of reflectional and rotational symmetry. Uniform polyhedra can be divided between convex forms with convex regular polygon faces and star forms. Star forms have either regular star polygon faces or vertex figures or both. This list includes these:
A similar technique can be applied to construct polyhedra with tetrahedral symmetry and octahedral symmetry. These polyhedra will have triangles or squares rather than pentagons. These variations are given Roman numeral subscripts denoting the number of sides on the non-hexagon faces: GP III (n,m), GP IV (n,m), and GP V (n,m).