enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. RNA - Wikipedia

    en.wikipedia.org/wiki/RNA

    Double-stranded RNA (dsRNA) is RNA with two complementary strands, similar to the DNA found in all cells, but with the replacement of thymine by uracil and the adding of one oxygen atom. dsRNA forms the genetic material of some viruses (double-stranded RNA viruses).

  3. Nucleic acid structure - Wikipedia

    en.wikipedia.org/wiki/Nucleic_acid_structure

    Cytosine, thymine, and uracil are pyrimidines, hence the glycosidic bonds form between their 1 nitrogen and the 1' -OH of the deoxyribose. For both the purine and pyrimidine bases, the phosphate group forms a bond with the deoxyribose sugar through an ester bond between one of its negatively charged oxygen groups and the 5' -OH of the sugar. [2]

  4. Ribonucleotide - Wikipedia

    en.wikipedia.org/wiki/Ribonucleotide

    At neutral pH, nucleic acids are highly charged as each phosphate group carries a negative charge. [7] Both DNA and RNA are built from nucleoside phosphates, also known as mononucleotide monomers, which are thermodynamically less likely to combine than amino acids. Phosphodiester bonds, when hydrolyzed, release a considerable amount of free energy.

  5. Uracil - Wikipedia

    en.wikipedia.org/wiki/Uracil

    Uracil (/ ˈ j ʊər ə s ɪ l /) (symbol U or Ura) is one of the four nucleotide bases in the nucleic acid RNA. The others are adenine (A), cytosine (C), and guanine (G). In RNA, uracil binds to adenine via two hydrogen bonds. In DNA, the uracil nucleobase is replaced by thymine (T). Uracil is a demethylated form of thymine.

  6. Nucleic acid - Wikipedia

    en.wikipedia.org/wiki/Nucleic_acid

    Strings of nucleotides are bonded to form spiraling backbones and assembled into chains of bases or base-pairs selected from the five primary, or canonical, nucleobases. RNA usually forms a chain of single bases, whereas DNA forms a chain of base pairs. The bases found in RNA and DNA are: adenine, cytosine, guanine, thymine, and uracil. Thymine ...

  7. Nucleic acid tertiary structure - Wikipedia

    en.wikipedia.org/wiki/Nucleic_acid_tertiary...

    Trivalent ions such as cobalt hexamine or lanthanide ions such as terbium (Tb 3+) are useful experimental tools for studying metal binding to RNA. [51] [52] A metal ion can interact with RNA in multiple ways. An ion can associate diffusely with the RNA backbone, shielding otherwise unfavorable electrostatic interactions. This charge screening ...

  8. Nucleic acid structure determination - Wikipedia

    en.wikipedia.org/wiki/Nucleic_acid_structure...

    This is due to the greater degree of intrinsic disorder and dynamism in nucleic acid structures and the negatively charged (deoxy)ribose-phosphate backbones, which repel each other in close proximity. Therefore, crystallized nucleic acids tend to be complexed with a protein of interest to provide structural order and neutralize the negative charge.

  9. Non-canonical base pairing - Wikipedia

    en.wikipedia.org/wiki/Non-canonical_base_pairing

    Figure 3: Cis and Trans Orientations of the glycosidic bond in RNA base pairs. Besides the three edges of interaction, base pairs can also vary in their cis/trans forms. The cis and trans structures depend on the orientation of the ribose sugar as opposed to the hydrogen bond interaction. These various orientations are shown in Figure 3.