Search results
Results from the WOW.Com Content Network
The potential of zero charge is used for determination of the absolute electrode potential in a given electrolyte. IUPAC also defines the potential difference with respect to the potential of zero charge as: E pzc = E − E σ=0. where: E pzc is the electrode potential difference with respect to the point of zero charge, E σ=0
Zeta potential can also be used for the pKa estimation of complex polymers that is otherwise difficult to measure accurately using conventional methods. This can help studying the ionisation behaviour of various synthetic and natural polymers under various conditions and can help in establishing standardised dissolution-pH thresholds for pH ...
In water, measurable pK a values range from about −2 for a strong acid to about 12 for a very weak acid (or strong base). A buffer solution of a desired pH can be prepared as a mixture of a weak acid and its conjugate base. In practice, the mixture can be created by dissolving the acid in water, and adding the requisite amount of strong acid ...
Thus, the pK a values of acids can be calculated by measuring the molar conductivity and extrapolating to zero concentration. Namely, p K a = p( K / 1 mol/L ) at the zero-concentration limit, where K is the dissociation constant from Ostwald's law.
Electrokinetic phenomena generally measure zeta potential, and a zero zeta potential is interpreted as the point of zero net charge at the shear plane. This is termed the isoelectric point. [ 29 ] Thus, the isoelectric point is the value of pH at which the colloidal particle remains stationary in an electrical field.
A buffer solution is a solution where the pH does not change significantly on dilution or if an acid or base is added at constant temperature. [1] Its pH changes very little when a small amount of strong acid or base is added to it.
The self-ionization of water can be ignored. This assumption is not, strictly speaking, valid with pH values close to 7, half the value of pK w, the constant for self-ionization of water. In this case the mass-balance equation for hydrogen should be extended to take account of the self-ionization of water.
In aqueous solutions, redox potential is a measure of the tendency of the solution to either gain or lose electrons in a reaction. A solution with a higher (more positive) reduction potential than some other molecule will have a tendency to gain electrons from this molecule (i.e. to be reduced by oxidizing this other molecule) and a solution with a lower (more negative) reduction potential ...