enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Maximum and minimum - Wikipedia

    en.wikipedia.org/wiki/Maximum_and_minimum

    In both the global and local cases, the concept of a strict extremum can be defined. For example, x ∗ is a strict global maximum point if for all x in X with x ≠ x ∗, we have f(x ∗) > f(x), and x ∗ is a strict local maximum point if there exists some ε > 0 such that, for all x in X within distance ε of x ∗ with x ≠ x ∗, we ...

  3. Blob detection - Wikipedia

    en.wikipedia.org/wiki/Blob_detection

    For the purpose of detecting grey-level blobs (local extrema with extent) from a watershed analogy, Lindeberg developed an algorithm based on pre-sorting the pixels, alternatively connected regions having the same intensity, in decreasing order of the intensity values. Then, comparisons were made between nearest neighbours of either pixels or ...

  4. Fermat's theorem (stationary points) - Wikipedia

    en.wikipedia.org/wiki/Fermat's_theorem...

    Fermat's theorem is central to the calculus method of determining maxima and minima: in one dimension, one can find extrema by simply computing the stationary points (by computing the zeros of the derivative), the non-differentiable points, and the boundary points, and then investigating this set to determine the extrema.

  5. Scale-invariant feature transform - Wikipedia

    en.wikipedia.org/wiki/Scale-invariant_feature...

    The detection and description of local image features can help in object recognition. The SIFT features are local and based on the appearance of the object at particular interest points, and are invariant to image scale and rotation. They are also robust to changes in illumination, noise, and minor changes in viewpoint.

  6. Hilbert–Huang transform - Wikipedia

    en.wikipedia.org/wiki/Hilbert–Huang_transform

    Identify all the local extrema in the test data. Connect all the local maxima by a cubic spline line as the upper envelope. Repeat the procedure for the local minima to produce the lower envelope. The upper and lower envelopes should cover all the data between them. Their mean is m 1. The difference between the data and m 1 is the first ...

  7. Quasi-Newton method - Wikipedia

    en.wikipedia.org/wiki/Quasi-Newton_method

    In numerical analysis, a quasi-Newton method is an iterative numerical method used either to find zeroes or to find local maxima and minima of functions via an iterative recurrence formula much like the one for Newton's method, except using approximations of the derivatives of the functions in place of exact derivatives.

  8. Parks–McClellan filter design algorithm - Wikipedia

    en.wikipedia.org/wiki/Parks–McClellan_filter...

    The extrema must occur at the pass and stop band edges and at either ω=0 or ω=π or both. The derivative of a polynomial of degree L is a polynomial of degree L−1, which can be zero at most at L−1 places. [3] So the maximum number of local extrema is the L−1 local extrema plus the 4 band edges, giving a total of L+3 extrema.

  9. Local property - Wikipedia

    en.wikipedia.org/wiki/Local_property

    Perhaps the best-known example of the idea of locality lies in the concept of local minimum (or local maximum), which is a point in a function whose functional value is the smallest (resp., largest) within an immediate neighborhood of points. [1]