Search results
Results from the WOW.Com Content Network
In mathematics, a line integral is an integral where the function to be integrated is evaluated along a curve. [1] The terms path integral, curve integral, and curvilinear integral are also used; contour integral is used as well, although that is typically reserved for line integrals in the complex plane.
Given the two red points, the blue line is the linear interpolant between the points, and the value y at x may be found by linear interpolation.. In mathematics, linear interpolation is a method of curve fitting using linear polynomials to construct new data points within the range of a discrete set of known data points.
Functions that maximize or minimize functionals may be found using the Euler–Lagrange equation of the calculus of variations. A simple example of such a problem is to find the curve of shortest length connecting two points. If there are no constraints, the solution is a straight line between the points. However, if the curve is constrained to ...
For example, a line integral is defined for functions of two or more variables, and the interval of integration is replaced by a curve connecting two points in space. In a surface integral, the curve is replaced by a piece of a surface in three-dimensional space.
Consider the above example of estimating f(2.5). Since 2.5 is midway between 2 and 3, it is reasonable to take f(2.5) midway between f(2) = 0.9093 and f(3) = 0.1411, which yields 0.5252. Generally, linear interpolation takes two data points, say (x a,y a) and (x b,y b), and the interpolant is given by:
In complex analysis, the residue theorem, sometimes called Cauchy's residue theorem, is a powerful tool to evaluate line integrals of analytic functions over closed curves; it can often be used to compute real integrals and infinite series as well. It generalizes the Cauchy integral theorem and Cauchy's integral formula.
Even if the gradient theorem (also called fundamental theorem of calculus for line integrals) has been proved for a differentiable (so looked as smooth) curve so far, the theorem is also proved for a piecewise-smooth curve since this curve is made by joining multiple differentiable curves so the proof for this curve is made by the proof per ...
In vector calculus, a conservative vector field is a vector field that is the gradient of some function. [1] A conservative vector field has the property that its line integral is path independent; the choice of path between two points does not change the value of the line integral.