enow.com Web Search

  1. Ad

    related to: how to solve circumcenter equations with two fractions at home video youtube

Search results

  1. Results from the WOW.Com Content Network
  2. Cyclic quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Cyclic_quadrilateral

    Examples of cyclic quadrilaterals. In Euclidean geometry, a cyclic quadrilateral or inscribed quadrilateral is a quadrilateral whose vertices all lie on a single circle.This circle is called the circumcircle or circumscribed circle, and the vertices are said to be concyclic.

  3. Circumcircle - Wikipedia

    en.wikipedia.org/wiki/Circumcircle

    The circumcenter's position depends on the type of triangle: For an acute triangle (all angles smaller than a right angle), the circumcenter always lies inside the triangle. For a right triangle, the circumcenter always lies at the midpoint of the hypotenuse. This is one form of Thales' theorem.

  4. Law of sines - Wikipedia

    en.wikipedia.org/wiki/Law_of_sines

    In trigonometry, the law of sines, sine law, sine formula, or sine rule is an equation relating the lengths of the sides of any triangle to the sines of its angles.According to the law, ⁡ = ⁡ = ⁡ =, where a, b, and c are the lengths of the sides of a triangle, and α, β, and γ are the opposite angles (see figure 2), while R is the radius of the triangle's circumcircle.

  5. Cross-multiplication - Wikipedia

    en.wikipedia.org/wiki/Cross-multiplication

    This is a common procedure in mathematics, used to reduce fractions or calculate a value for a given variable in a fraction. If we have an equation =, where x is a variable we are interested in solving for, we can use cross-multiplication to determine that =.

  6. Euler line - Wikipedia

    en.wikipedia.org/wiki/Euler_line

    In geometry, the Euler line, named after Leonhard Euler (/ ˈ ɔɪ l ər / OY-lər), is a line determined from any triangle that is not equilateral.It is a central line of the triangle, and it passes through several important points determined from the triangle, including the orthocenter, the circumcenter, the centroid, the Exeter point and the center of the nine-point circle of the triangle.

  7. Nine-point circle - Wikipedia

    en.wikipedia.org/wiki/Nine-point_circle

    The diagram above shows the nine significant points of the nine-point circle. Points D, E, F are the midpoints of the three sides of the triangle. Points G, H, I are the feet of the altitudes of the triangle.

  8. Brocard points - Wikipedia

    en.wikipedia.org/wiki/Brocard_points

    The segment between the first two Brocard points is perpendicularly bisected at the Brocard midpoint by the line connecting the triangle's circumcenter and its Lemoine point. Moreover, the circumcenter, the Lemoine point, and the first two Brocard points are concyclic —they all fall on the same circle, of which the segment connecting the ...

  9. Orthocentric system - Wikipedia

    en.wikipedia.org/wiki/Orthocentric_system

    Common nine-point circle, where N, O 4, A 4 are the nine-point center, circumcenter, and orthocenter respectively of the triangle formed from the other three orthocentric points A 1, A 2, A 3. The center of this common nine-point circle lies at the centroid of the four orthocentric points. The radius of the common nine-point circle is the ...

  1. Ad

    related to: how to solve circumcenter equations with two fractions at home video youtube