enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Radius of convergence - Wikipedia

    en.wikipedia.org/wiki/Radius_of_convergence

    Two cases arise: The first case is theoretical: when you know all the coefficients then you take certain limits and find the precise radius of convergence.; The second case is practical: when you construct a power series solution of a difficult problem you typically will only know a finite number of terms in a power series, anywhere from a couple of terms to a hundred terms.

  3. Convergence tests - Wikipedia

    en.wikipedia.org/wiki/Convergence_tests

    While most of the tests deal with the convergence of infinite series, they can also be used to show the convergence or divergence of infinite products. This can be achieved using following theorem: Let { a n } n = 1 ∞ {\displaystyle \left\{a_{n}\right\}_{n=1}^{\infty }} be a sequence of positive numbers.

  4. Cauchy–Hadamard theorem - Wikipedia

    en.wikipedia.org/wiki/Cauchy–Hadamard_theorem

    In mathematics, the Cauchy–Hadamard theorem is a result in complex analysis named after the French mathematicians Augustin Louis Cauchy and Jacques Hadamard, describing the radius of convergence of a power series. It was published in 1821 by Cauchy, [1] but remained relatively unknown until Hadamard rediscovered it. [2]

  5. Root test - Wikipedia

    en.wikipedia.org/wiki/Root_test

    Note that sometimes a series like this is called a power series "around p", because the radius of convergence is the radius R of the largest interval or disc centred at p such that the series will converge for all points z strictly in the interior (convergence on the boundary of the interval or disc generally has to be checked separately).

  6. Abel's theorem - Wikipedia

    en.wikipedia.org/wiki/Abel's_theorem

    The utility of Abel's theorem is that it allows us to find the limit of a power series as its argument (that is, ) approaches from below, even in cases where the radius of convergence, , of the power series is equal to and we cannot be sure whether the limit should be finite or not.

  7. Power series - Wikipedia

    en.wikipedia.org/wiki/Power_series

    For instance it is not true that if two power series = and = have the same radius of convergence, then = (+) also has this radius of convergence: if = and = + (), for instance, then both series have the same radius of convergence of 1, but the series = (+) = = has a radius of convergence of 3.

  8. Spectral radius - Wikipedia

    en.wikipedia.org/wiki/Spectral_radius

    The spectral radius of a finite graph is defined to be the spectral radius of its adjacency matrix. This definition extends to the case of infinite graphs with bounded degrees of vertices (i.e. there exists some real number C such that the degree of every vertex of the graph is smaller than C). In this case, for the graph G define:

  9. Convergence of Fourier series - Wikipedia

    en.wikipedia.org/wiki/Convergence_of_Fourier_series

    Convergence is not necessarily given in the general case, and certain criteria must be met for convergence to occur. Determination of convergence requires the comprehension of pointwise convergence, uniform convergence, absolute convergence, L p spaces, summability methods and the Cesàro mean.