Ads
related to: solving literal equations pdf
Search results
Results from the WOW.Com Content Network
A clause is a disjunction of literals (or a single literal). A clause is called a Horn clause if it contains at most one positive literal. A formula is in conjunctive normal form (CNF) if it is a conjunction of clauses (or a single clause). For example, x 1 is a positive literal, ¬x 2 is a negative literal, and x 1 ∨ ¬x 2 is a clause.
In computer science and formal methods, a SAT solver is a computer program which aims to solve the Boolean satisfiability problem.On input a formula over Boolean variables, such as "(x or y) and (x or not y)", a SAT solver outputs whether the formula is satisfiable, meaning that there are possible values of x and y which make the formula true, or unsatisfiable, meaning that there are no such ...
Download as PDF; Printable version; ... This is a list of equations, by Wikipedia page under ... Equation solving; Theory of equations
In the other cases, the formula contains a positive unit clause , so we do a unit propagation: the literal is set to true, all the clauses containing are removed, and all clauses containing have this literal removed. The result is a new Horn formula, so we reiterate.
In Boolean logic, a formula is in conjunctive normal form (CNF) or clausal normal form if it is a conjunction of one or more clauses, where a clause is a disjunction of literals; otherwise put, it is a product of sums or an AND of ORs.
In mathematical logic, a literal is an atomic formula (also known as an atom or prime formula) or its negation. [1] [2] The definition mostly appears in proof theory (of classical logic), e.g. in conjunctive normal form and the method of resolution. Literals can be divided into two types: [2] A positive literal is just an atom (e.g., ).
When there is only one variable, polynomial equations have the form P(x) = 0, where P is a polynomial, and linear equations have the form ax + b = 0, where a and b are parameters. To solve equations from either family, one uses algorithmic or geometric techniques that originate from linear algebra or mathematical analysis.
The fields of mathematics and computing intersect both in computer science, the study of algorithms and data structures, and in scientific computing, the study of algorithmic methods for solving problems in mathematics, science, and engineering. List of algorithm general topics; List of computability and complexity topics
Ads
related to: solving literal equations pdf