enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Test cross - Wikipedia

    en.wikipedia.org/wiki/Test_cross

    When conducting a dihybrid test cross, two dominant phenotypic characteristics are selected and crossed with parents displaying double recessive traits. The phenotypic characteristics of the F1 generation are then analyzed. In such a test cross, if the individual being tested is heterozygous, a phenotypic ratio of 1:1:1:1 is typically observed. [7]

  3. Zygosity - Wikipedia

    en.wikipedia.org/wiki/Zygosity

    The words homozygous, heterozygous, and hemizygous are used to describe the genotype of a diploid organism at a single locus on the DNA. Homozygous describes a genotype consisting of two identical alleles at a given locus, heterozygous describes a genotype consisting of two different alleles at a locus, hemizygous describes a genotype consisting of only a single copy of a particular gene in an ...

  4. Three-point cross - Wikipedia

    en.wikipedia.org/wiki/Three-point_cross

    An individual heterozygous for three mutations is crossed with a homozygous recessive individual, and the phenotypes of the progeny are scored. The two most common phenotypes that result are the parental gametes ; the two least common phenotypes that result come from a double crossover in gamete formation .

  5. Dihybrid cross - Wikipedia

    en.wikipedia.org/wiki/Dihybrid_cross

    In the example pictured to the right, RRYY/rryy parents result in F 1 offspring that are heterozygous for both R and Y (RrYy). [4] This is a dihybrid cross of two heterozygous parents. The traits observed in this cross are the same traits that Mendel was observing for his experiments. This cross results in the expected phenotypic ratio of 9:3:3:1.

  6. Monohybrid cross - Wikipedia

    en.wikipedia.org/wiki/Monohybrid_cross

    Figure 1: Inheritance pattern of dominant (red) and recessive (white) phenotypes when each parent (1) is homozygous for either the dominant or recessive trait. All members of the F 1 generation are heterozygous and share the same dominant phenotype (2), while the F 2 generation exhibits a 6:2 ratio of dominant to recessive phenotypes (3).

  7. Punnett square - Wikipedia

    en.wikipedia.org/wiki/Punnett_square

    A Punnett square showing a typical test cross. (green pod color is dominant over yellow for pea pods [1] in contrast to pea seeds, where yellow cotyledon color is dominant over green [2]). Punnett squares for each combination of parents' colour vision status giving probabilities of their offsprings' status, each cell having 25% probability in ...

  8. Heterozygote advantage - Wikipedia

    en.wikipedia.org/wiki/Heterozygote_advantage

    A heterozygote advantage describes the case in which the heterozygous genotype has a higher relative fitness than either the homozygous dominant or homozygous recessive genotype. Loci exhibiting heterozygote advantage are a small minority of loci. [1] The specific case of heterozygote advantage due to a single locus is known as overdominance.

  9. Heterosis - Wikipedia

    en.wikipedia.org/wiki/Heterosis

    Dominance and overdominance have different consequences for the gene expression profile of the individuals. If overdominance is the main cause for the fitness advantages of heterosis, then there should be an over-expression of certain genes in the heterozygous offspring compared to the homozygous parents.