Search results
Results from the WOW.Com Content Network
The first study of the human brain at 3.0 T was published in 1994, [13] and in 1998 at 8 T. [14] Studies of the human brain have been performed at 9.4 T (2006) [15] and up to 10.5 T (2019). [16] Paul Lauterbur and Sir Peter Mansfield were awarded the 2003 Nobel Prize in Physiology or Medicine for their discoveries concerning MRI.
Like in vivo MRS, fMRS can probe different nuclei, such as hydrogen (1 H) and carbon (13 C). The 1 H nucleus is the most sensitive and is most commonly used to measure metabolite concentrations and concentration dynamics, whereas 13 C is best suited for characterizing fluxes and pathways of brain metabolism.
CT scans may be used to diagnose headaches when neuroimaging is indicated and MRI is not available, or in emergency settings when hemorrhage, stroke, or traumatic brain injury is suspected. [9] MRI (magnetic resonance imaging) provides more sensitivity in the evaluation of the cavernous sinus and the orbital apex. [8]
The key to Phase-contrast MRI (PC-MRI) is the use of a bipolar gradient. [4] A bipolar gradient has equal positive and negative magnitudes that are applied for the same time duration. The bipolar gradient in PC-MRI is put in a sequence after RF excitation but before data collection during the echo time of the generic MRI modality.
Susceptibility weighted imaging (SWI), originally called BOLD venographic imaging, is an MRI sequence that is exquisitely sensitive to venous blood, hemorrhage and iron storage. SWI uses a fully flow compensated, long echo, gradient recalled echo (GRE) pulse sequence to acquire images.
Diffusion imaging is an MRI method that produces in vivo magnetic resonance images of biological tissues sensitized with the local characteristics of molecular diffusion, generally water (but other moieties can also be investigated using MR spectroscopic approaches). [15]
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Magnetic resonance angiography (MRA) is a group of techniques based on magnetic resonance imaging (MRI) to image blood vessels. Magnetic resonance angiography is used to generate images of arteries (and less commonly veins) in order to evaluate them for stenosis (abnormal narrowing), occlusions, aneurysms (vessel wall dilatations, at risk of rupture) or other abnormalities.