enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Likelihood ratios in diagnostic testing - Wikipedia

    en.wikipedia.org/wiki/Likelihood_ratios_in...

    Pretest probability refers to the chance that an individual in a given population has a disorder or condition; this is the baseline probability prior to the use of a diagnostic test. Post-test probability refers to the probability that a condition is truly present given a positive test result.

  3. Pre- and post-test probability - Wikipedia

    en.wikipedia.org/wiki/Pre-_and_post-test_probability

    Post-test probability, as estimated from the pre-test probability with likelihood ratio, should be handled with caution in individuals with other determinants (such as risk factors) than the general population, as well as in individuals that have undergone previous tests, because such determinants or tests may also influence the test itself in ...

  4. Positive and negative predictive values - Wikipedia

    en.wikipedia.org/wiki/Positive_and_negative...

    Bayes' theorem confers inherent limitations on the accuracy of screening tests as a function of disease prevalence or pre-test probability. It has been shown that a testing system can tolerate significant drops in prevalence, up to a certain well-defined point known as the prevalence threshold, below which the reliability of a positive ...

  5. Diagnostic odds ratio - Wikipedia

    en.wikipedia.org/wiki/Diagnostic_odds_ratio

    The diagnostic odds ratio ranges from zero to infinity, although for useful tests it is greater than one, and higher diagnostic odds ratios are indicative of better test performance. [1] Diagnostic odds ratios less than one indicate that the test can be improved by simply inverting the outcome of the test – the test is in the wrong direction ...

  6. Sensitivity and specificity - Wikipedia

    en.wikipedia.org/wiki/Sensitivity_and_specificity

    In medical diagnosis, test sensitivity is the ability of a test to correctly identify those with the disease (true positive rate), whereas test specificity is the ability of the test to correctly identify those without the disease (true negative rate). If 100 patients known to have a disease were tested, and 43 test positive, then the test has ...

  7. False positives and false negatives - Wikipedia

    en.wikipedia.org/wiki/False_positives_and_false...

    The specificity of the test is equal to 1 minus the false positive rate. In statistical hypothesis testing, this fraction is given the Greek letter α, and 1 − α is defined as the specificity of the test. Increasing the specificity of the test lowers the probability of type I errors, but may raise the probability of type II errors (false ...

  8. Predictive value of tests - Wikipedia

    en.wikipedia.org/wiki/Predictive_value_of_tests

    Predictive value of tests is the probability of a target condition given by the result of a test, [1] often in regard to medical tests.. In cases where binary classification can be applied to the test results, such yes versus no, test target (such as a substance, symptom or sign) being present versus absent, or either a positive or negative test), then each of the two outcomes has a separate ...

  9. F-score - Wikipedia

    en.wikipedia.org/wiki/F-score

    Precision and recall. In statistical analysis of binary classification and information retrieval systems, the F-score or F-measure is a measure of predictive performance. It is calculated from the precision and recall of the test, where the precision is the number of true positive results divided by the number of all samples predicted to be positive, including those not identified correctly ...