Search results
Results from the WOW.Com Content Network
Luminous efficacy can be normalized by the maximum possible luminous efficacy to a dimensionless quantity called luminous efficiency.The distinction between efficacy and efficiency is not always carefully maintained in published sources, so it is not uncommon to see "efficiencies" expressed in lumens per watt, or "efficacies" expressed as a percentage.
The CIE distributes standard tables with luminosity function values at 5 nm intervals from 380 nm to 780 nm. [cie 1] The standard luminous efficiency function is normalized to a peak value of unity at 555 nm (see luminous coefficient). The value of the constant in front of the integral is usually rounded off to 683 lm/W. The small excess ...
The luminous efficacy of lamps is the number of lumens emitted for each watt of electric power used. The luminous efficacy of a typical CFL is 50–70 lumens per watt (lm/W) and that of a typical incandescent lamp is 10–17 lm/W. [38]
The typical luminous efficacy of fluorescent lamps is 50–100 lumens per watt, several times the efficacy of incandescent bulbs with comparable light output (e.g. the luminous efficacy of an incandescent lamp may only be 16 lm/w).
The 26th General Conference on Weights and Measures (CGPM) redefined the candela in 2018. [10] [11] The new definition, which took effect on 20 May 2019, is: The candela [...] is defined by taking the fixed numerical value of the luminous efficacy of monochromatic radiation of frequency 540 × 10 12 Hz, [a] K cd, to be 683 when expressed in the unit lm W −1, which is equal to cd sr W −1 ...
Luminous efficacy (of radiation) K: lumen per watt: lm/W: M −1 ⋅L −2 ⋅T 3 ⋅J: Ratio of luminous flux to radiant flux: Luminous efficacy (of a source) η [nb 3] lumen per watt: lm/W: M −1 ⋅L −2 ⋅T 3 ⋅J: Ratio of luminous flux to power consumption Luminous efficiency, luminous coefficient V: 1: Luminous efficacy normalized by ...
Luminous energy is related to radiant energy by the expression = / ¯ (). Here λ {\displaystyle \lambda } is the wavelength of light, and y ¯ ( λ ) {\displaystyle {\overline {y}}(\lambda )} is the luminous efficiency function , which represents the eye's sensitivity to different wavelengths of light.
Luminous efficacy (of radiation) K: lumen per watt: lm/W: M −1 ⋅L −2 ⋅T 3 ⋅J: Ratio of luminous flux to radiant flux: Luminous efficacy (of a source) η [nb 3] lumen per watt: lm/W: M −1 ⋅L −2 ⋅T 3 ⋅J: Ratio of luminous flux to power consumption Luminous efficiency, luminous coefficient V: 1: Luminous efficacy normalized by ...