Search results
Results from the WOW.Com Content Network
The saturation current (or scale current), more accurately the reverse saturation current, is the part of the reverse current in a semiconductor diode caused by diffusion of minority carriers from the neutral regions to the depletion region. This current is almost independent of the reverse voltage.
Varying the current in the control winding moves the operating point up and down on the saturation curve, controlling the alternating current through the inductor. These are used in variable fluorescent light ballasts, and power control systems. [11] Saturation is also exploited in fluxgate magnetometers and fluxgate compasses.
The effect of reverse saturation current on the I-V curve of a crystalline silicon solar cell are shown in the figure to the right. Physically, reverse saturation current is a measure of the "leakage" of carriers across the p–n junction in reverse bias.
Photocurrent is the electric current through a photosensitive device, such as a photodiode, as the result of exposure to radiant power.The photocurrent may occur as a result of the photoelectric, photoemissive, or photovoltaic effect.
A saturable reactor in electrical engineering is a special form of inductor where the magnetic core can be deliberately saturated by a direct electric current in a control winding. Once saturated, the inductance of the saturable reactor drops dramatically. [1] This decreases inductive reactance and allows increased flow of the alternating ...
Without saturation the inductance (and thus the blocking capability) of a choke stays constant regardless of the DC current flowing; [2] counter-intuitively, if a DC magnetization is present in an inductor, an increased (up to some limit) air gap actually incrementally increases the effective inductance ; [ 3 ]
This field causes, by electromagnetic induction, an electric current to flow in the wire loop on the right. The most widespread version of Faraday's law states: The electromotive force around a closed path is equal to the negative of the time rate of change of the magnetic flux enclosed by the path.
A current–voltage characteristic or I–V curve (current–voltage curve) is a relationship, typically represented as a chart or graph, between the electric current through a circuit, device, or material, and the corresponding voltage, or potential difference, across it.