Search results
Results from the WOW.Com Content Network
Thermodynamic temperature is a specifically thermodynamic concept, while the original directly measureable state variables are defined by ordinary physical measurements, without reference to thermodynamic concepts; for this reason, it is helpful to regard thermodynamic temperature as a state function.
The equilibrium state of a thermodynamic system is described by specifying its "state". The state of a thermodynamic system is specified by a number of extensive quantities, the most familiar of which are volume, internal energy, and the amount of each constituent particle (particle numbers). Extensive parameters are properties of the entire ...
The state of aggregation for thermodynamic purposes is the standard state, sometimes called the reference state, and defined by specifying certain conditions. The normal standard state is commonly defined as the most stable physical form of the substance at the specified temperature and a pressure of 1 bar or 1 atm. However, since any non ...
Corn oil: 230–238 °C [9] 446–460 °F Corn oil: Unrefined: 178 °C [7] 352 °F Cottonseed oil: Refined, bleached, deodorized: 220–230 °C [10] 428–446 °F Flaxseed oil: Unrefined: 107 °C: 225 °F [3] Grape seed oil: 216 °C: 421 °F Lard: 190 °C: 374 °F [5] Mustard oil: 250 °C: 480 °F [11] Olive oil: Refined: 199–243 °C: 390 ...
In the thermodynamics of equilibrium, a state function, function of state, or point function for a thermodynamic system is a mathematical function relating several state variables or state quantities (that describe equilibrium states of a system) that depend only on the current equilibrium thermodynamic state of the system [1] (e.g. gas, liquid, solid, crystal, or emulsion), not the path which ...
The standard state of a material (pure substance, mixture or solution) is a reference point used to calculate its properties under different conditions.A degree sign (°) or a superscript Plimsoll symbol (⦵) is used to designate a thermodynamic quantity in the standard state, such as change in enthalpy (ΔH°), change in entropy (ΔS°), or change in Gibbs free energy (ΔG°).
In physics and chemistry, an equation of state is a thermodynamic equation relating state variables, which describe the state of matter under a given set of physical conditions, such as pressure, volume, temperature, or internal energy. [1] [2] Most modern equations of state are formulated in the Helmholtz free energy.
Altitude (or elevation) is usually not a thermodynamic property. Altitude can help specify the location of a system, but that does not describe the state of the system. An exception would be if the effect of gravity need to be considered in order to describe a state, in which case altitude could indeed be a thermodynamic property.