Search results
Results from the WOW.Com Content Network
A principal diagonal of a hexagon is a diagonal which divides the hexagon into quadrilaterals. In any convex equilateral hexagon (one with all sides equal) with common side a, there exists [11]: p.184, #286.3 a principal diagonal d 1 such that and a principal diagonal d 2 such that
Coxeter states that every zonogon (a 2m-gon whose opposite sides are parallel and of equal length) can be dissected into m(m-1)/2 parallelograms. [ 4 ] In particular this is true for regular polygons with evenly many sides, in which case the parallelograms are all rhombi.
A pentagon is a five-sided polygon. A regular pentagon has 5 equal edges and 5 equal angles. In geometry, a polygon is traditionally a plane figure that is bounded by a finite chain of straight line segments closing in a loop to form a closed chain.
In Euclidean geometry, a regular polygon is a polygon that is direct equiangular (all angles are equal in measure) and equilateral (all sides have the same length). Regular polygons may be either convex or star .
In geometry, a pentagon (from Greek πέντε (pente) 'five' and γωνία (gonia) 'angle' [1]) is any five-sided polygon or 5-gon. The sum of the internal angles in a simple pentagon is 540°. A pentagon may be simple or self-intersecting. A self-intersecting regular pentagon (or star pentagon) is called a pentagram.
[11] [10]: p.11 One way to see this is as a limiting case of Brianchon's theorem, which states that a hexagon all of whose sides are tangent to a single conic section has three diagonals that meet at a point. From a tangential quadrilateral, one can form a hexagon with two 180° angles, by placing two new vertices at two opposite points of ...
The diagonals of a cube with side length 1. AC' (shown in blue) is a space diagonal with length , while AC (shown in red) is a face diagonal and has length .. In geometry, a diagonal is a line segment joining two vertices of a polygon or polyhedron, when those vertices are not on the same edge.
The regular 65537-gon (one with all sides equal and all angles equal) is of interest for being a constructible polygon: that is, it can be constructed using a compass and an unmarked straightedge. This is because 65,537 is a Fermat prime , being of the form 2 2 n + 1 (in this case n = 4).