Search results
Results from the WOW.Com Content Network
Cross-sectional view of the structures that can be formed by phospholipids in an aqueous solution. A biological membrane, biomembrane or cell membrane is a selectively permeable membrane that separates the interior of a cell from the external environment or creates intracellular compartments by serving as a boundary between one part of the cell and another.
Illustration of a eukaryotic cell membrane Comparison of a eukaryotic vs. a prokaryotic cell membrane. The cell membrane (also known as the plasma membrane or cytoplasmic membrane, and historically referred to as the plasmalemma) is a biological membrane that separates and protects the interior of a cell from the outside environment (the extracellular space).
Differences in vascular permeability between normal tissue and a tumor. Vascular permeability, often in the form of capillary permeability or microvascular permeability, characterizes the capacity of a blood vessel wall to allow for the flow of small molecules (drugs, nutrients, water, ions) or even whole cells (lymphocytes on their way to the site of inflammation) in and out of the vessel.
In terms of membrane transport the gradient is of interest as it contributes to decreased system entropy in the co-transport of substances against their gradient. One of the most important pumps in animal cells is the sodium potassium pump, that operates through the following mechanism: [9]
Three-dimensional schematic of the interstitium, a fluid-filled space supported by a network of collagen. In anatomy, the interstitium is a contiguous fluid-filled space existing between a structural barrier, such as a cell membrane or the skin, and internal structures, such as organs, including muscles and the circulatory system.
For example, developing cells in the meristems contain small provacuoles and cells of the vascular cambium have many small vacuoles in the winter and one large one in the summer. Aside from storage, the main role of the central vacuole is to maintain turgor pressure against the cell wall .
Small amounts of carbohydrates are also found in the cell membrane. The biological model, which was devised by Seymour Jonathan Singer and Garth L. Nicolson in 1972, [1] describes the cell membrane as a two-dimensional liquid where embedded proteins are generally randomly distributed. For example, it is stated that "A prediction of the fluid ...
Cholesterol molecules are also found throughout the plasma membrane and act as a buffer of membrane fluidity. [3] The phospholipid bilayer is most permeable to small, uncharged solutes. Protein channels are embedded in or through the phospholipids, [4] and, collectively, this model is known as the fluid mosaic model.