Search results
Results from the WOW.Com Content Network
A condenser is designed to transfer heat from a working fluid (e.g. water in a steam power plant) to a secondary fluid or the surrounding air. The condenser relies on the efficient heat transfer that occurs during phase changes, in this case during the condensation of a vapor into a liquid. The vapor typically enters the condenser at a ...
The condenser must also be dimensioned so that the condensed liquid can flow out at the maximum rate (mass over time) that the vapor is expected to enter it. Care must also be taken to prevent the boiling liquid to enter the condenser as splattering from explosive boiling , or droplets created as bubbles pop.
Vapor-compression refrigeration [6] For comparison, a simple stylized diagram of a heat pump's vapor-compression refrigeration cycle: 1) condenser, 2) expansion valve, 3) evaporator, 4) compressor (Note that this diagram is flipped vertically and horizontally compared to the previous one) [7] Temperature–entropy diagram of the vapor-compression cycle.
During normal operation, the flow of the working fluid vapor from the evaporator to the condenser sweeps the non-condensable gas into the reservoir, where it doesn't interfere with the normal heat pipe operation. When the nominal condenser is heated, the vapor flow is from the nominal condenser to the nominal evaporator.
Alternatively, a liquid-to-liquid or similar heat exchanger may be used instead. The high-temperature system transfers heat to a conventional condenser that carries the entire heat output of the system and may be passive, fan, or water-cooled. This is an auto-cascade process with two different refrigerants.
A representative pressure–volume diagram for a refrigeration cycle. Vapour-compression refrigeration or vapor-compression refrigeration system (VCRS), [1] in which the refrigerant undergoes phase changes, is one of the many refrigeration cycles and is the most widely used method for air conditioning of buildings and automobiles.
The vapor at the top of the column then passes into the condenser, where it cools until it condenses into a liquid. The separation can be enhanced with the addition of more trays (to a practical limitation of heat, flow, etc.). The process continues until all the most volatile components in the liquid feed boil out of the mixture.
The vapor then flows down the system of grooves and then goes to the evaporator and the vapor line towards the condenser, where it condenses as heat is removed by the radiator. The two-phase reservoir (or compensation chamber) at the end of the evaporator is specifically designed to operate at a slightly lower temperature than the evaporator ...