Search results
Results from the WOW.Com Content Network
Radius of gyration (in polymer science)(, unit: nm or SI unit: m): For a macromolecule composed of mass elements, of masses , =1,2,…,, located at fixed distances from the centre of mass, the radius of gyration is the square-root of the mass average of over all mass elements, i.e.,
In structural engineering, Johnson's parabolic formula is an empirically based equation for calculating the critical buckling stress of a column. The formula is based on experimental results by J. B. Johnson from around 1900 as an alternative to Euler's critical load formula under low slenderness ratio (the ratio of radius of gyration to ...
The radius of this circle, , can be determined by equating the magnitude of the Lorentz force to the centripetal force as = | |. Rearranging, the gyroradius can be expressed as = | |. Thus, the gyroradius is directly proportional to the particle mass and perpendicular velocity, while it is inversely proportional to the particle electric charge ...
In solid mechanics and structural engineering, section modulus is a geometric property of a given cross-section used in the design of beams or flexural members.Other geometric properties used in design include: area for tension and shear, radius of gyration for compression, and second moment of area and polar second moment of area for stiffness.
For this case the radius of gyration is approximated using Flory's mean field approach which yields a scaling for the radius of gyration of: R g ∼ N ν {\displaystyle R_{g}\sim N^{\nu }} , where R g {\displaystyle R_{g}} is the radius of gyration of the polymer, N {\displaystyle N} is the number of bond segments (equal to the degree of ...
This formula was derived in 1744 by the Swiss mathematician Leonhard Euler. [2] The column will remain straight for loads less than the critical load. The critical load is the greatest load that will not cause lateral deflection (buckling). For loads greater than the critical load, the column will deflect laterally.
In these equations, the subscript A is for analyte (the solution) and T is for the toluene with the Rayleigh ratio of toluene, R T being 1.35×10 −5 cm −1 for a HeNe laser. As described above, the radius of gyration, R g, and the second virial coefficient, A 2, are also calculated from this equation.
This simple formula generalizes to define moment of inertia for an arbitrarily shaped body as the sum of all the elemental point masses dm each multiplied by the square of its perpendicular distance r to an axis k. An arbitrary object's moment of inertia thus depends on the spatial distribution of its mass.