enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Nif gene - Wikipedia

    en.wikipedia.org/wiki/Nif_gene

    The nif genes are genes encoding enzymes involved in the fixation of atmospheric nitrogen into a form of nitrogen available to living organisms. The primary enzyme encoded by the nif genes is the nitrogenase complex which is in charge of converting atmospheric nitrogen (N 2) to other nitrogen forms such as ammonia which the organism can use for various purposes.

  3. Nitrogen fixation - Wikipedia

    en.wikipedia.org/wiki/Nitrogen_fixation

    Plants that contribute to nitrogen fixation include those of the legume family—Fabaceae— with taxa such as kudzu, clover, soybean, alfalfa, lupin, peanut and rooibos. [45] They contain symbiotic rhizobia bacteria within nodules in their root systems, producing nitrogen compounds that help the plant to grow and compete with other plants. [58]

  4. Nif regulon - Wikipedia

    en.wikipedia.org/wiki/Nif_regulon

    nifRLA operon: The tight expression regulation of the nitrogen fixation (nif) genes is mediated by the products of the nifRLA operon. NifA activates transcription of nif genes by the alternative form of RNA polymerase, s54-holoenzyme. NifL is a negative regulatory gene which inhibits the activation of other nif genes by nifA protein.

  5. Root nodule - Wikipedia

    en.wikipedia.org/wiki/Root_nodule

    Nitrogen is the most commonly limiting nutrient in plants. Legumes use nitrogen fixing bacteria, specifically symbiotic rhizobia bacteria, within their root nodules to counter the limitation. Rhizobia bacteria convert nitrogen gas (N 2) to ammonia (NH 3) in a process called nitrogen fixation.

  6. Actinorhizal plant - Wikipedia

    en.wikipedia.org/wiki/Actinorhizal_plant

    Actinorhizal plants are distributed within three clades, [1] and are characterized by nitrogen fixation. [2] They are distributed globally, and are pioneer species in nitrogen-poor environments. Their symbiotic relationships with Frankia evolved independently over time, [ 3 ] and the symbiosis occurs in the root nodule infection site.

  7. Nitrogenase - Wikipedia

    en.wikipedia.org/wiki/Nitrogenase

    Nitrogenase is an enzyme responsible for catalyzing nitrogen fixation, which is the reduction of nitrogen (N 2) to ammonia (NH 3) and a process vital to sustaining life on Earth. [9] There are three types of nitrogenase found in various nitrogen-fixing bacteria: molybdenum (Mo) nitrogenase, vanadium (V) nitrogenase , and iron-only (Fe ...

  8. Rhizobium - Wikipedia

    en.wikipedia.org/wiki/Rhizobium

    Rhizobium is a genus of Gram-negative soil bacteria that fix nitrogen. Rhizobium species form an endosymbiotic nitrogen-fixing association with roots of (primarily) legumes and other flowering plants. The bacteria colonize plant cells to form root nodules, where they convert atmospheric nitrogen into ammonia using the enzyme nitrogenase.

  9. Abiological nitrogen fixation using homogeneous catalysts

    en.wikipedia.org/wiki/Abiological_nitrogen...

    Abiological nitrogen fixation describes chemical processes that fix (react with) N 2, usually with the goal of generating ammonia. The dominant technology for abiological nitrogen fixation is the Haber process, which uses iron-based heterogeneous catalysts and H 2 to convert N 2 to NH 3. This article focuses on homogeneous (soluble) catalysts ...