enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Queueing theory - Wikipedia

    en.wikipedia.org/wiki/Queueing_theory

    Queueing theory is the mathematical study of waiting lines, or queues. [1] A queueing model is constructed so that queue lengths and waiting time can be predicted. [1] Queueing theory is generally considered a branch of operations research because the results are often used when making business decisions about the resources needed to provide a ...

  3. Kendall's notation - Wikipedia

    en.wikipedia.org/wiki/Kendall's_notation

    Waiting queue at Ottawa station.. In queueing theory, a discipline within the mathematical theory of probability, Kendall's notation (or sometimes Kendall notation) is the standard system used to describe and classify a queueing node.

  4. M/D/1 queue - Wikipedia

    en.wikipedia.org/wiki/M/D/1_queue

    The busy period is the time period measured from the instant a first customer arrives at an empty queue to the time when the queue is again empty. This time period is equal to D times the number of customers served. If ρ < 1, then the number of customers served during a busy period of the queue has a Borel distribution with parameter ρ. [7] [8]

  5. M/M/1 queue - Wikipedia

    en.wikipedia.org/wiki/M/M/1_queue

    An M/M/1 queueing node. In queueing theory, a discipline within the mathematical theory of probability, an M/M/1 queue represents the queue length in a system having a single server, where arrivals are determined by a Poisson process and job service times have an exponential distribution. The model name is written in Kendall's notation.

  6. M/M/c queue - Wikipedia

    en.wikipedia.org/wiki/M/M/c_queue

    In queueing theory, a discipline within the mathematical theory of probability, the M/M/c queue (or Erlang–C model [1]: 495 ) is a multi-server queueing model. [2] In Kendall's notation it describes a system where arrivals form a single queue and are governed by a Poisson process, there are c servers, and job service times are exponentially distributed. [3]

  7. Mean sojourn time - Wikipedia

    en.wikipedia.org/wiki/Mean_sojourn_time

    The mean sojourn time (or sometimes mean waiting time) for an object in a dynamical system is the amount of time an object is expected to spend in a system before leaving the system permanently. This concept is widely used in various fields, including physics, chemistry, and stochastic processes, to study the behavior of systems over time.

  8. Residual time - Wikipedia

    en.wikipedia.org/wiki/Residual_time

    In queueing theory, it determines the remaining time, that a newly arriving customer to a non-empty queue has to wait until being served. [ 1 ] In wireless networking , it determines, for example, the remaining lifetime of a wireless link on arrival of a new packet.

  9. Markovian arrival process - Wikipedia

    en.wikipedia.org/wiki/Markovian_arrival_process

    In queueing theory, a discipline within the mathematical theory of probability, a Markovian arrival process (MAP or MArP [1]) is a mathematical model for the time between job arrivals to a system. The simplest such process is a Poisson process where the time between each arrival is exponentially distributed .