Search results
Results from the WOW.Com Content Network
Compressible flow (or gas dynamics) is the branch of fluid mechanics that deals with flows having significant changes in fluid density.While all flows are compressible, flows are usually treated as being incompressible when the Mach number (the ratio of the speed of the flow to the speed of sound) is smaller than 0.3 (since the density change due to velocity is about 5% in that case). [1]
The fluid is siloxane MM (hexamethyldisiloxane, ) evolving in the non-ideal gasdynamic regime. Non ideal compressible fluid dynamics (NICFD), or non ideal gas dynamics, is a branch of fluid mechanics studying the dynamic behavior of fluids not obeying ideal-gas thermodynamics.
Isothermal flow is a model of compressible fluid flow whereby the flow remains at the same temperature while flowing in a conduit. [1] In the model, heat transferred through the walls of the conduit is offset by frictional heating back into the flow. Although the flow temperature remains constant, a change in stagnation temperature occurs ...
In fluid mechanics, Kelvin's circulation theorem states: [1] [2] In a barotropic, ideal fluid with conservative body forces, the circulation around a closed curve (which encloses the same fluid elements) moving with the fluid remains constant with time. The theorem is named after William Thomson, 1st Baron Kelvin who published it in 1869.
Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.
As it moves, the mass of a fluid parcel remains constant, while—in a compressible flow—its volume may change, [2] [3] and its shape changes due to distortion by the flow. [1] In an incompressible flow , the volume of the fluid parcel is also a constant ( isochoric flow).
The weakly compressible SPH in fluid dynamics is based on the discretization of the Navier–Stokes equations or Euler equations for compressible fluids. To close the system, an appropriate equation of state is utilized to link pressure p {\displaystyle p} and density ρ {\displaystyle \rho } .
In fluid dynamics, dynamic pressure (denoted by q or Q and sometimes called velocity pressure) is the quantity defined by: [1] = where (in SI units): q is the dynamic pressure in pascals (i.e., N/m 2, ρ (Greek letter rho) is the fluid mass density (e.g. in kg/m 3), and; u is the flow speed in m/s.