enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Harmonic number - Wikipedia

    en.wikipedia.org/wiki/Harmonic_number

    By this construction, the function that defines the harmonic number for complex values is the unique function that simultaneously satisfies (1) H 0 = 0, (2) H x = H x−1 + 1/x for all complex numbers x except the non-positive integers, and (3) lim m→+∞ (H m+x − H m) = 0 for all complex values x.

  3. Harmonic progression (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Harmonic_progression...

    Equivalently, a sequence is a harmonic progression when each term is the harmonic mean of the neighboring terms. As a third equivalent characterization, it is an infinite sequence of the form 1 a , 1 a + d , 1 a + 2 d , 1 a + 3 d , ⋯ , {\displaystyle {\frac {1}{a}},\ {\frac {1}{a+d}},\ {\frac {1}{a+2d}},\ {\frac {1}{a+3d}},\cdots ,}

  4. Harmonic series (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Harmonic_series_(mathematics)

    [1] [2] Every term of the harmonic series after the first is the harmonic mean of the neighboring terms, so the terms form a harmonic progression; the phrases harmonic mean and harmonic progression likewise derive from music. [2] Beyond music, harmonic sequences have also had a certain popularity with architects.

  5. List of sums of reciprocals - Wikipedia

    en.wikipedia.org/wiki/List_of_sums_of_reciprocals

    A harmonic divisor number is a positive integer whose divisors have a harmonic mean that is an integer. The first five of these are 1, 6, 28, 140, and 270. It is not known whether any harmonic divisor numbers (besides 1) are odd, but there are no odd ones less than 10 24. The sum of the reciprocals of the divisors of a perfect number is 2.

  6. Hyperharmonic number - Wikipedia

    en.wikipedia.org/wiki/Hyperharmonic_number

    It is known, that the harmonic numbers are never integers except the case n=1. The same question can be posed with respect to the hyperharmonic numbers: are there integer hyperharmonic numbers? István Mező proved [5] that if r=2 or r=3, these numbers are never integers except the trivial case when n=1.

  7. Convergence tests - Wikipedia

    en.wikipedia.org/wiki/Convergence_tests

    This can be achieved using following theorem: Let {} = be a sequence of positive numbers. Then the infinite product ∏ n = 1 ∞ ( 1 + a n ) {\displaystyle \prod _{n=1}^{\infty }(1+a_{n})} converges if and only if the series ∑ n = 1 ∞ a n {\displaystyle \sum _{n=1}^{\infty }a_{n}} converges.

  8. Harmonic analysis - Wikipedia

    en.wikipedia.org/wiki/Harmonic_analysis

    Harmonic analysis is a branch of mathematics concerned with investigating the connections between a function and its representation in frequency.The frequency representation is found by using the Fourier transform for functions on unbounded domains such as the full real line or by Fourier series for functions on bounded domains, especially periodic functions on finite intervals.

  9. Arithmetic progression - Wikipedia

    en.wikipedia.org/wiki/Arithmetic_progression

    For instance, the sequence 5, 7, 9, 11, 13, 15, . . . is an arithmetic progression with a common difference of 2. If the initial term of an arithmetic progression is and the common difference of successive members is , then the -th term of the sequence is given by