Search results
Results from the WOW.Com Content Network
By this construction, the function that defines the harmonic number for complex values is the unique function that simultaneously satisfies (1) H 0 = 0, (2) H x = H x−1 + 1/x for all complex numbers x except the non-positive integers, and (3) lim m→+∞ (H m+x − H m) = 0 for all complex values x.
In mathematics, a harmonic progression (or harmonic sequence) is a progression formed by taking the reciprocals of an arithmetic progression, which is also known as an arithmetic sequence. Equivalently, a sequence is a harmonic progression when each term is the harmonic mean of the neighboring terms.
[1] [2] Every term of the harmonic series after the first is the harmonic mean of the neighboring terms, so the terms form a harmonic progression; the phrases harmonic mean and harmonic progression likewise derive from music. [2] Beyond music, harmonic sequences have also had a certain popularity with architects.
It is known, that the harmonic numbers are never integers except the case n=1. The same question can be posed with respect to the hyperharmonic numbers: are there integer hyperharmonic numbers? István Mező proved [5] that if r=2 or r=3, these numbers are never integers except the trivial case when n=1.
A harmonic divisor number is a positive integer whose divisors have a harmonic mean that is an integer. The first five of these are 1, 6, 28, 140, and 270. It is not known whether any harmonic divisor numbers (besides 1) are odd, but there are no odd ones less than 10 24. The sum of the reciprocals of the divisors of a perfect number is 2.
This can be achieved using following theorem: Let {} = be a sequence of positive numbers. Then the infinite product ∏ n = 1 ∞ ( 1 + a n ) {\displaystyle \prod _{n=1}^{\infty }(1+a_{n})} converges if and only if the series ∑ n = 1 ∞ a n {\displaystyle \sum _{n=1}^{\infty }a_{n}} converges.
Harmonic analysis is a branch of mathematics concerned with investigating the connections between a function and its representation in frequency. The frequency representation is found by using the Fourier transform for functions on unbounded domains such as the full real line or by Fourier series for functions on bounded domains, especially ...
As another example of using generating functions to relate sequences and manipulate sums, for an arbitrary sequence f n we define the two sequences of sums := = ~:= = (+) (+) (+), for all n ≥ 0, and seek to express the second sums in terms of the first. We suggest an approach by generating functions.