Search results
Results from the WOW.Com Content Network
In the fundamental branches of modern physics, namely general relativity and its widely applicable subset special relativity, as well as relativistic quantum mechanics and relativistic quantum field theory, the Lorentz transformation is the transformation rule under which all four-vectors and tensors containing physical quantities transform from one frame of reference to another.
The sum of the entries along the main diagonal (the trace), plus one, equals 4 − 4(x 2 + y 2 + z 2), which is 4w 2. Thus we can write the trace itself as 2w 2 + 2w 2 − 1; and from the previous version of the matrix we see that the diagonal entries themselves have the same form: 2x 2 + 2w 2 − 1, 2y 2 + 2w 2 − 1, and 2z 2 + 2w 2 − 1. So ...
Let (x, y, z) the Cartesian coordinate system of the laboratory (or stationary) frame of reference, and (x′, y′, z′) = (x′, y′, z) be a Cartesian coordinate system that is rotating around the z axis of the laboratory frame of reference with angular frequency Ω. This is called the rotating frame of reference. Physical variables in ...
A point P has coordinates (x, y) with respect to the original system and coordinates (x′, y′) with respect to the new system. [1] In the new coordinate system, the point P will appear to have been rotated in the opposite direction, that is, clockwise through the angle . A rotation of axes in more than two dimensions is defined similarly.
The inverse relations (t, x, y, z in terms of t′, x′, y′, z′) can be found by algebraically solving the original set of equations. A more efficient way is to use physical principles. Here F′ is the "stationary" frame while F is the "moving" frame.
For example, a circle of radius 2, centered at the origin of the plane, may be described as the set of all points whose coordinates x and y satisfy the equation x 2 + y 2 = 4; the area, the perimeter and the tangent line at any point can be computed from this equation by using integrals and derivatives, in a way that can be applied to any curve.
This is Rodrigues' formula for the axis of a composite rotation defined in terms of the axes of the two component rotations. He derived this formula in 1840 (see page 408). [ 3 ] The three rotation axes A , B , and C form a spherical triangle and the dihedral angles between the planes formed by the sides of this triangle are defined by the ...
Traditionally the Newton–Euler equations is the grouping together of Euler's two laws of motion for a rigid body into a single equation with 6 components, using column vectors and matrices. These laws relate the motion of the center of gravity of a rigid body with the sum of forces and torques (or synonymously moments ) acting on the rigid body.