Search results
Results from the WOW.Com Content Network
Neuroplasticity, also known as neural plasticity or just plasticity, is the ability of neural networks in the brain to change through growth and reorganization. Neuroplasticity refers to the brain's ability to reorganize and rewire its neural connections, enabling it to adapt and function in ways that differ from its prior state.
How the brain changes. Brain plasticity science is the study of a physical process. Gray matter can actually shrink or thicken; neural connections can be forged and refined or weakened and severed.
For example, in certain neurodegenerative conditions, such as Alzheimer's disease, abnormal sprouting of neurons may contribute to the spread of the disease and further neuronal death. Therefore, while neural sprouting is an important form of neuroplasticity , it is a complex process that can have both positive and negative effects, depending ...
Activity-dependent plasticity is a form of functional and structural neuroplasticity that arises from the use of cognitive functions and personal experience. [ 1 ] Hence, it is the biological basis for learning and the formation of new memories .
In neuroscience, homeostatic plasticity refers to the capacity of neurons to regulate their own excitability relative to network activity. The term homeostatic plasticity derives from two opposing concepts: 'homeostatic' (a product of the Greek words for 'same' and 'state' or 'condition') and plasticity (or 'change'), thus homeostatic plasticity means "staying the same through change".
Developmental plasticity is a general term referring to changes in neural connections during development as a result of environmental interactions as well as neural changes induced by learning. [1] Much like neuroplasticity , or brain plasticity, developmental plasticity is specific to the change in neurons and synaptic connections as a ...
Plasticity in the brain affects the strength of neural connections and pathways. Nonsynaptic plasticity is a form of neuroplasticity that involves modification of ion channel function in the axon, dendrites, and cell body that results in specific changes in the integration of excitatory postsynaptic potentials and inhibitory postsynaptic potentials.
Adaptive resonance theory (ART) is a theory developed by Stephen Grossberg and Gail Carpenter on aspects of how the brain processes information.It describes a number of artificial neural network models which use supervised and unsupervised learning methods, and address problems such as pattern recognition and prediction.