enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Backpropagation - Wikipedia

    en.wikipedia.org/wiki/Backpropagation

    Backpropagation computes the gradient of a loss function with respect to the weights of the network for a single input–output example, and does so efficiently, computing the gradient one layer at a time, iterating backward from the last layer to avoid redundant calculations of intermediate terms in the chain rule; this can be derived through ...

  3. Backpropagation through time - Wikipedia

    en.wikipedia.org/wiki/Backpropagation_through_time

    Back_Propagation_Through_Time(a, y) // a[t] is the input at time t. y[t] is the output Unfold the network to contain k instances of f do until stopping criterion is met: x := the zero-magnitude vector // x is the current context for t from 0 to n − k do // t is time. n is the length of the training sequence Set the network inputs to x, a[t ...

  4. Seppo Linnainmaa - Wikipedia

    en.wikipedia.org/wiki/Seppo_Linnainmaa

    He was born in Pori. [1] He received his MSc in 1970 and introduced a reverse mode of automatic differentiation in his MSc thesis. [2] [3] In 1974 he obtained the first doctorate ever awarded in computer science at the University of Helsinki. [4]

  5. Feedforward neural network - Wikipedia

    en.wikipedia.org/wiki/Feedforward_neural_network

    In 1986, David E. Rumelhart et al. popularised backpropagation but did not cite the original work. [29] [8] In 2003, interest in backpropagation networks returned due to the successes of deep learning being applied to language modelling by Yoshua Bengio with co-authors. [30]

  6. Rprop - Wikipedia

    en.wikipedia.org/wiki/Rprop

    Rprop, short for resilient backpropagation, is a learning heuristic for supervised learning in feedforward artificial neural networks. This is a first-order optimization algorithm. This algorithm was created by Martin Riedmiller and Heinrich Braun in 1992. [1]

  7. Almeida–Pineda recurrent backpropagation - Wikipedia

    en.wikipedia.org/wiki/Almeida–Pineda_recurrent...

    Almeida–Pineda recurrent backpropagation is an extension to the backpropagation algorithm that is applicable to recurrent neural networks. It is a type of supervised learning . It was described somewhat cryptically in Richard Feynman 's senior thesis, and rediscovered independently in the context of artificial neural networks by both Fernando ...

  8. Levenberg–Marquardt algorithm - Wikipedia

    en.wikipedia.org/wiki/Levenberg–Marquardt...

    This equation is an example of very sensitive initial conditions for the Levenberg–Marquardt algorithm. One reason for this sensitivity is the existence of multiple minima — the function cos ⁡ ( β x ) {\displaystyle \cos \left(\beta x\right)} has minima at parameter value β ^ {\displaystyle {\hat {\beta }}} and β ^ + 2 n π ...

  9. Conjugate gradient method - Wikipedia

    en.wikipedia.org/wiki/Conjugate_gradient_method

    A practical way to enforce this is by requiring that the next search direction be built out of the current residual and all previous search directions. The conjugation constraint is an orthonormal-type constraint and hence the algorithm can be viewed as an example of Gram-Schmidt orthonormalization. This gives the following expression: