Search results
Results from the WOW.Com Content Network
A reversible hydrogen electrode (RHE) is a reference electrode, more specifically a subtype of the standard hydrogen electrodes, for electrochemical processes. Unlike the standard hydrogen electrode, its measured potential does change with the pH, so it can be directly used in the electrolyte. [1] [2] [3]
Common reference electrodes and potential with respect to the standard hydrogen electrode (SHE): Standard hydrogen electrode (SHE) (E = 0.000 V) activity of H + = 1 Molar; Normal hydrogen electrode (NHE) (E ≈ 0.000 V) concentration H + = 1 Molar; Reversible hydrogen electrode (RHE) (E = 0.000 V - 0.0591 × pH) at 25 °C
Scheme of the standard hydrogen electrode. The scheme of the standard hydrogen electrode: platinized platinum electrode; hydrogen gas; solution of the acid with activity of H + = 1 mol dm −3; hydroseal for preventing oxygen interference; reservoir through which the second half-element of the galvanic cell should be attached.
The standard hydrogen electrode (SHE), with [ H +] = 1 M works thus at a pH = 0. At pH = 7, when [ H +] = 10 −7 M, the reduction potential of H + differs from zero because it depends on pH. Solving the Nernst equation for the half-reaction of reduction of two protons into hydrogen gas gives: 2 H + + 2 e − ⇌ H 2
Since hydrogen can be used as an alternative clean burning fuel, there has been a need to split water efficiently. However, there are known materials that can mediate the reduction step efficiently therefore much of the current research is aimed at the oxidation half reaction also known as the Oxygen Evolution Reaction (OER).
A nickel–hydrogen battery (NiH 2 or Ni–H 2) is a rechargeable electrochemical power source based on nickel and hydrogen. [5] It differs from a nickel–metal hydride (NiMH) battery by the use of hydrogen in gaseous form, stored in a pressurized cell at up to 1200 psi (82.7 bar ) pressure. [ 6 ]
In this process, the reaction is broken into two half-reactions which occur at separate electrodes. In this situation the reactant's energy is directly converted to electricity. [36] [37] The standard reduction potential of hydrogen is defined as 0V, and frequently referred to as the standard hydrogen electrode (SHE). [38]
In electrochemistry, electrode potential is the voltage of a galvanic cell built from a standard reference electrode and another electrode to be characterized. [1] By convention, the reference electrode is the standard hydrogen electrode (SHE). It is defined to have a potential of zero volts. It may also be defined as the potential difference ...