enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hermitian matrix - Wikipedia

    en.wikipedia.org/wiki/Hermitian_matrix

    Hermitian matrices are applied in the design and analysis of communications system, especially in the field of multiple-input multiple-output (MIMO) systems. Channel matrices in MIMO systems often exhibit Hermitian properties. In graph theory, Hermitian matrices are used to study the spectra of graphs. The Hermitian Laplacian matrix is a key ...

  3. Conjugate transpose - Wikipedia

    en.wikipedia.org/wiki/Conjugate_transpose

    Conjugate transpose. In mathematics, the conjugate transpose, also known as the Hermitian transpose, of an complex matrix is an matrix obtained by transposing and applying complex conjugation to each entry (the complex conjugate of being , for real numbers and ). There are several notations, such as or , [1] , [2] or (often in physics) .

  4. Inner product space - Wikipedia

    en.wikipedia.org/wiki/Inner_product_space

    The inner product of two vectors in the space is a scalar, often denoted with angle brackets such as in . Inner products allow formal definitions of intuitive geometric notions, such as lengths, angles, and orthogonality (zero inner product) of vectors. Inner product spaces generalize Euclidean vector spaces, in which the inner product is the ...

  5. Hermitian manifold - Wikipedia

    en.wikipedia.org/wiki/Hermitian_manifold

    Hermitian manifold. In mathematics, and more specifically in differential geometry, a Hermitian manifold is the complex analogue of a Riemannian manifold. More precisely, a Hermitian manifold is a complex manifold with a smoothly varying Hermitian inner product on each (holomorphic) tangent space. One can also define a Hermitian manifold as a ...

  6. Rayleigh quotient - Wikipedia

    en.wikipedia.org/wiki/Rayleigh_quotient

    In mathematics, the Rayleigh quotient[1] (/ ˈreɪ.li /) for a given complex Hermitian matrix and nonzero vector is defined as: [2][3] For real matrices and vectors, the condition of being Hermitian reduces to that of being symmetric, and the conjugate transpose to the usual transpose . Note that for any non-zero scalar .

  7. Eigenvalues and eigenvectors - Wikipedia

    en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

    Eigenvalues and eigenvectors. In linear algebra, an eigenvector (/ ˈaɪɡən -/ EYE-gən-) or characteristic vector is a vector that has its direction unchanged by a given linear transformation. More precisely, an eigenvector, , of a linear transformation, , is scaled by a constant factor, , when the linear transformation is applied to it: .

  8. Hermitian adjoint - Wikipedia

    en.wikipedia.org/wiki/Hermitian_adjoint

    Hermitian adjoint. In mathematics, specifically in operator theory, each linear operator on an inner product space defines a Hermitian adjoint (or adjoint) operator on that space according to the rule. where is the inner product on the vector space. The adjoint may also be called the Hermitian conjugate or simply the Hermitian[1] after Charles ...

  9. Unitary matrix - Wikipedia

    en.wikipedia.org/wiki/Unitary_matrix

    U can be written as U = e iH, where e indicates the matrix exponential, i is the imaginary unit, and H is a Hermitian matrix. For any nonnegative integer n, the set of all n × n unitary matrices with matrix multiplication forms a group, called the unitary group U(n). Every square matrix with unit Euclidean norm is the average of two unitary ...