enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Integral curve - Wikipedia

    en.wikipedia.org/wiki/Integral_curve

    An integral curve for X passing through p at time t 0 is a curve α : J → M of class C r−1, defined on an open interval J of the real line R containing t 0, such that α ( t 0 ) = p ; {\displaystyle \alpha (t_{0})=p;\,}

  3. Cayley graph - Wikipedia

    en.wikipedia.org/wiki/Cayley_graph

    In mathematics, a Cayley graph, also known as a Cayley color graph, Cayley diagram, group diagram, or color group, [1] is a graph that encodes the abstract structure of a group. Its definition is suggested by Cayley's theorem (named after Arthur Cayley ), and uses a specified set of generators for the group.

  4. Gaussian integral - Wikipedia

    en.wikipedia.org/wiki/Gaussian_integral

    A graph of the function () = and the area between it and the -axis, (i.e. the entire real line) which is equal to . The Gaussian integral , also known as the Euler–Poisson integral , is the integral of the Gaussian function f ( x ) = e − x 2 {\displaystyle f(x)=e^{-x^{2}}} over the entire real line.

  5. Integral graph - Wikipedia

    en.wikipedia.org/wiki/Integral_graph

    The line graph of an integral graph is again integral. For instance, as the line graph of , the octahedral graph is integral, and as the complement of the line graph of , the Petersen graph is integral. [2] Among the cubic symmetric graphs the utility graph, the Petersen graph, the Nauru graph and the Desargues graph are integral. The Higman ...

  6. Dirac delta function - Wikipedia

    en.wikipedia.org/wiki/Dirac_delta_function

    In mathematical analysis, the Dirac delta function (or δ distribution), also known as the unit impulse, [1] is a generalized function on the real numbers, whose value is zero everywhere except at zero, and whose integral over the entire real line is equal to one. [2] [3] [4] Thus it can be represented heuristically as

  7. Residue theorem - Wikipedia

    en.wikipedia.org/wiki/Residue_theorem

    In complex analysis, the residue theorem, sometimes called Cauchy's residue theorem, is a powerful tool to evaluate line integrals of analytic functions over closed curves; it can often be used to compute real integrals and infinite series as well. It generalizes the Cauchy integral theorem and Cauchy's integral formula.

  8. Line integral - Wikipedia

    en.wikipedia.org/wiki/Line_integral

    A line integral of a scalar field is thus a line integral of a vector field, where the vectors are always tangential to the line of the integration. Line integrals of vector fields are independent of the parametrization r in absolute value, but they do depend on its orientation. Specifically, a reversal in the orientation of the parametrization ...

  9. Contour integration - Wikipedia

    en.wikipedia.org/wiki/Contour_integration

    One use for contour integrals is the evaluation of integrals along the real line that are not readily found by using only real variable methods. [5] Contour integration methods include: direct integration of a complex-valued function along a curve in the complex plane; application of the Cauchy integral formula; and; application of the residue ...