enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. g-force - Wikipedia

    en.wikipedia.org/wiki/G-force

    The g-force or gravitational force equivalent is mass-specific force (force per unit mass), expressed in units of standard gravity (symbol g or g0, not to be confused with "g", the symbol for grams). It is used for sustained accelerations, that cause a perception of weight.

  3. Equations for a falling body - Wikipedia

    en.wikipedia.org/wiki/Equations_for_a_falling_body

    Equations for a falling body. A set of equations describing the trajectories of objects subject to a constant gravitational force under normal Earth -bound conditions. Assuming constant acceleration g due to Earth’s gravity, Newton's law of universal gravitation simplifies to F = mg, where F is the force exerted on a mass m by the Earth’s ...

  4. Gravitational time dilation - Wikipedia

    en.wikipedia.org/wiki/Gravitational_time_dilation

    v. t. e. Gravitational time dilation is a form of time dilation, an actual difference of elapsed time between two events, as measured by observers situated at varying distances from a gravitating mass. The lower the gravitational potential (the closer the clock is to the source of gravitation), the slower time passes, speeding up as the ...

  5. Load factor (aeronautics) - Wikipedia

    en.wikipedia.org/wiki/Load_factor_(aeronautics)

    Load factor (aeronautics) In aeronautics, the load factor is the ratio of the lift of an aircraft to its weight [1][2]: § 5.22 and represents a global measure of the stress ("load") to which the structure of the aircraft is subjected: where. is the weight. Since the load factor is the ratio of two forces, it is dimensionless.

  6. Drag equation - Wikipedia

    en.wikipedia.org/wiki/Drag_equation

    In fluid dynamics, the drag equation is a formula used to calculate the force of drag experienced by an object due to movement through a fully enclosing fluid. The equation is: where. F d {\displaystyle F_ {\rm {d}}} is the drag force, which is by definition the force component in the direction of the flow velocity,

  7. Gravitational acceleration - Wikipedia

    en.wikipedia.org/wiki/Gravitational_acceleration

    Gravitational acceleration. In physics, gravitational acceleration is the acceleration of an object in free fall within a vacuum (and thus without experiencing drag). This is the steady gain in speed caused exclusively by gravitational attraction. All bodies accelerate in vacuum at the same rate, regardless of the masses or compositions of the ...

  8. Specific force - Wikipedia

    en.wikipedia.org/wiki/Specific_force

    Specific force (SF) is a mass-specific quantity defined as the quotient of force per unit mass. It is a physical quantity of kind acceleration, with dimension of length per time squared and units of metre per second squared (m·s −2). It is normally applied to forces other than gravity, to emulate the relationship between gravitational ...

  9. Peak ground acceleration - Wikipedia

    en.wikipedia.org/wiki/Peak_ground_acceleration

    Peak ground acceleration can be expressed in fractions of g (the standard acceleration due to Earth's gravity, equivalent to g-force) as either a decimal or percentage; in m/s 2 (1 g = 9.81 m/s 2); [7] or in multiples of Gal, where 1 Gal is equal to 0.01 m/s 2 (1 g = 981 Gal).