Search results
Results from the WOW.Com Content Network
In mathematics, and more specifically in linear algebra, a linear subspace or vector subspace [1] [note 1] is a vector space that is a subset of some larger vector space. A linear subspace is usually simply called a subspace when the context serves to distinguish it from other types of subspaces .
All algorithms that work this way are referred to as Krylov subspace methods; they are among the most successful methods currently available in numerical linear algebra. These methods can be used in situations where there is an algorithm to compute the matrix-vector multiplication without there being an explicit representation of , giving rise ...
More generally, if W is a linear subspace of a (possibly infinite dimensional) vector space V then the codimension of W in V is the dimension (possibly infinite) of the quotient space V/W, which is more abstractly known as the cokernel of the inclusion. For finite-dimensional vector spaces, this agrees with the previous definition
Linear subspace A linear subspace or vector subspace W of a vector space V is a non-empty subset of V that is closed under vector addition and scalar multiplication; that is, the sum of two elements of W and the product of an element of W by a scalar belong to W. [10] This implies that every linear combination of elements of W belongs to W. A ...
Kernel and image of a linear map L from V to W. The kernel of L is a linear subspace of the domain V. [3] [2] In the linear map :, two elements of V have the same image in W if and only if their difference lies in the kernel of L, that is, = () =.
The row space of this matrix is the vector space spanned by the row vectors. The column vectors of a matrix. The column space of this matrix is the vector space spanned by the column vectors. In linear algebra, the column space (also called the range or image) of a matrix A is the span (set of all possible linear combinations) of its column ...
Flat (geometry), a Euclidean subspace; Affine subspace, a geometric structure that generalizes the affine properties of a flat; Projective subspace, a geometric structure that generalizes a linear subspace of a vector space; Multilinear subspace in multilinear algebra, a subset of a tensor space that is closed under addition and scalar ...
The stabilizer subgroup of the standard flag is the group of invertible upper triangular matrices.. More generally, the stabilizer of a flag (the linear operators on V such that () < for all i) is, in matrix terms, the algebra of block upper triangular matrices (with respect to an adapted basis), where the block sizes .