Search results
Results from the WOW.Com Content Network
In fluid mechanics, Kelvin's circulation theorem states: [1][2] In a barotropic, ideal fluid with conservative body forces, the circulation around a closed curve (which encloses the same fluid elements) moving with the fluid remains constant with time. The theorem is named after William Thomson, 1st Baron Kelvin who published it in 1869.
Rate of change of velocity per unit time: the second time derivative of position m/s 2: L T −2: vector Angular acceleration: ω a: Change in angular velocity per unit time rad/s 2: T −2: pseudovector Angular momentum: L: Measure of the extent and direction an object rotates about a reference point kg⋅m 2 /s L 2 M T −1: conserved ...
Time-derivatives of position. In physics, the fourth, fifth and sixth derivatives of position are defined as derivatives of the position vector with respect to time – with the first, second, and third derivatives being velocity, acceleration, and jerk, respectively. The higher-order derivatives are less common than the first three; [1][2 ...
In 3 dimensions, a differential 0-form is a real-valued function f(x, y, z); a differential 1-form is the following expression, where the coefficients are functions: + +; a differential 2-form is the formal sum, again with function coefficients: + +; and a differential 3-form is defined by a single term with one function as coefficient: .
The classical theorem of Stokes can be stated in one sentence: The line integral of a vector field over a loop is equal to the surface integral of its curl over the enclosed surface. Stokes' theorem is a special case of the generalized Stokes theorem. [5][6] In particular, a vector field on can be considered as a 1-form in which case its curl ...
v. t. e. In mathematics, the derivative is a fundamental tool that quantifies the sensitivity of change of a function 's output with respect to its input. The derivative of a function of a single variable at a chosen input value, when it exists, is the slope of the tangent line to the graph of the function at that point.
v. t. e. In calculus, the inverse function rule is a formula that expresses the derivative of the inverse of a bijective and differentiable function f in terms of the derivative of f. More precisely, if the inverse of is denoted as , where if and only if , then the inverse function rule is, in Lagrange's notation,
The Kelvin equation describes the change in vapour pressure due to a curved liquid–vapor interface, such as the surface of a droplet. The vapor pressure at a convex curved surface is higher than that at a flat surface. The Kelvin equation is dependent upon thermodynamic principles and does not allude to special properties of materials.