enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Lagrange's four-square theorem - Wikipedia

    en.wikipedia.org/wiki/Lagrange's_four-square_theorem

    The number of representations of a natural number n as the sum of four squares of integers is denoted by r 4 (n). Jacobi's four-square theorem states that this is eight times the sum of the divisors of n if n is odd and 24 times the sum of the odd divisors of n if n is even (see divisor function), i.e.

  3. Jacobi's four-square theorem - Wikipedia

    en.wikipedia.org/wiki/Jacobi's_four-square_theorem

    In particular, for a prime number p we have the explicit formula r 4 (p) = 8(p + 1). [1] Some values of r 4 (n) occur infinitely often as r 4 (n) = r 4 (2 m n) whenever n is even. The values of r 4 (n) can be arbitrarily large: indeed, r 4 (n) is infinitely often larger than ⁡. [1]

  4. Square - Wikipedia

    en.wikipedia.org/wiki/Square

    The diagonals of a square are equal and bisect each other, meeting at 90°. The diagonal of a square bisects its internal angle, forming adjacent angles of 45°. All four sides of a square are equal. Opposite sides of a square are parallel. A square has Schläfli symbol {4}. A truncated square, t{4}, is an octagon, {8}. An alternated square, h ...

  5. Square (algebra) - Wikipedia

    en.wikipedia.org/wiki/Square_(algebra)

    Square (algebra) 5⋅5, or 52 (5 squared), can be shown graphically using a square. Each block represents one unit, 1⋅1, and the entire square represents 5⋅5, or the area of the square. In mathematics, a square is the result of multiplying a number by itself. The verb "to square" is used to denote this operation.

  6. Multiplication table - Wikipedia

    en.wikipedia.org/wiki/Multiplication_table

    Cycles of the unit digit of multiples of integers ending in 1, 3, 7 and 9 (upper row), and 2, 4, 6 and 8 (lower row) on a telephone keypad. Figure 1 is used for multiples of 1, 3, 7, and 9. Figure 2 is used for the multiples of 2, 4, 6, and 8. These patterns can be used to memorize the multiples of any number from 0 to 10, except 5.

  7. Square number - Wikipedia

    en.wikipedia.org/wiki/Square_number

    Square number. Square number 16 as sum of gnomons. In mathematics, a square number or perfect square is an integer that is the square of an integer; [1] in other words, it is the product of some integer with itself. For example, 9 is a square number, since it equals 32 and can be written as 3 × 3.

  8. Multiplication - Wikipedia

    en.wikipedia.org/wiki/Multiplication

    For example, multiplying the lengths (in meters or feet) of the two sides of a rectangle gives its area (in square meters or square feet). Such a product is the subject of dimensional analysis. The inverse operation of multiplication is division. For example, since 4 multiplied by 3 equals 12, 12 divided by 3 equals 4.

  9. Chinese multiplication table - Wikipedia

    en.wikipedia.org/wiki/Chinese_multiplication_table

    The Chinese multiplication table is the first requisite for using the Rod calculus for carrying out multiplication, division, the extraction of square roots, and the solving of equations based on place value decimal notation. It was known in China as early as the Spring and Autumn period, and survived through the age of the abacus; pupils in ...