enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Aspect ratio (aeronautics) - Wikipedia

    en.wikipedia.org/wiki/Aspect_ratio_(aeronautics)

    Aspect ratio (aeronautics) An ASH 31 glider with very high aspect ratio (AR=33.5) and lift-to-drag ratio (L/D=56) In aeronautics, the aspect ratio of a wing is the ratio of its span to its mean chord. It is equal to the square of the wingspan divided by the wing area. Thus, a long, narrow wing has a high aspect ratio, whereas a short, wide wing ...

  3. Lift-induced drag - Wikipedia

    en.wikipedia.org/wiki/Lift-induced_drag

    However, since wingspan can be increased while decreasing aspect ratio, or vice versa, the apparent relationship between aspect ratio and induced drag does not always hold. [ 2 ] [ 9 ] : 489 For a typical twin-engine wide-body aircraft at cruise speed, induced drag is the second-largest component of total drag, accounting for approximately 37% ...

  4. Forces on sails - Wikipedia

    en.wikipedia.org/wiki/Forces_on_sails

    A high aspect ratio indicates a long, narrow sail, whereas a low aspect ratio indicates a short, wide sail. [39] For most sails, the length of the chord is not a constant but varies along the wing, so the aspect ratio AR is defined as the square of the sail height b divided by the area A of the sail planform: [3] [30]

  5. Oswald efficiency number - Wikipedia

    en.wikipedia.org/wiki/Oswald_efficiency_number

    The Oswald efficiency is defined for the cases where the overall coefficient of drag of the wing or airplane has a constant+quadratic dependence on the aircraft lift coefficient. where. For conventional fixed-wing aircraft with moderate aspect ratio and sweep, Oswald efficiency number with wing flaps retracted is typically between 0.7 and 0.85 ...

  6. Lifting-line theory - Wikipedia

    en.wikipedia.org/wiki/Lifting-line_theory

    The Lanchester-Prandtl lifting-line theory[1] is a mathematical model in aerodynamics that predicts lift distribution over a three-dimensional wing from the wing's geometry. [2] The theory was expressed independently [3] by Frederick W. Lanchester in 1907, [4] and by Ludwig Prandtl in 1918–1919 [5] after working with Albert Betz and Max Munk.

  7. Lift-to-drag ratio - Wikipedia

    en.wikipedia.org/wiki/Lift-to-drag_ratio

    Lift and drag are the two components of the total aerodynamic force acting on an aerofoil or aircraft. In aerodynamics, the lift-to-drag ratio (or L/D ratio) is the lift generated by an aerodynamic body such as an aerofoil or aircraft, divided by the aerodynamic drag caused by moving through air. It describes the aerodynamic efficiency under ...

  8. Thickness-to-chord ratio - Wikipedia

    en.wikipedia.org/wiki/Thickness-to-chord_ratio

    The natural outcome of this requirement is a wing design that is thin and wide, which has a low thickness-to-chord ratio. At lower speeds, undesirable parasitic drag is largely a function of the total surface area, which suggests using a wing with minimum chord, leading to the high aspect ratios seen on light aircraft and regional airliners ...

  9. Downforce - Wikipedia

    en.wikipedia.org/wiki/Downforce

    The aspect ratio is the width of the airfoil divided by its chord. If the wing is not rectangular, aspect ratio is written AR=b 2 /s, where AR=aspect ratio, b=span, and s=wing area. Also, a greater angle of attack (or tilt) of the wing or spoiler, creates more downforce, which puts more pressure on the rear wheels and creates more drag.