Search results
Results from the WOW.Com Content Network
In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, called the modulus of the operation.. Given two positive numbers a and n, a modulo n (often abbreviated as a mod n) is the remainder of the Euclidean division of a by n, where a is the dividend and n is the divisor.
Adding 4 hours to 9 o'clock gives 1 o'clock, since 13 is congruent to 1 modulo 12. In mathematics, modular arithmetic is a system of arithmetic for integers, where numbers "wrap around" when reaching a certain value, called the modulus. The modern approach to modular arithmetic was developed by Carl Friedrich Gauss in his book Disquisitiones ...
A residue numeral system (RNS) is a numeral system representing integers by their values modulo several pairwise coprime integers called the moduli. This representation is allowed by the Chinese remainder theorem, which asserts that, if M is the product of the moduli, there is, in an interval of length M, exactly one integer having any given set of modular values.
Bitwise operation. In computer programming, a bitwise operation operates on a bit string, a bit array or a binary numeral (considered as a bit string) at the level of its individual bits. It is a fast and simple action, basic to the higher-level arithmetic operations and directly supported by the processor.
With respect to the result, this example may be arithmetically viewed as modulo 2 binary addition, and as logically equivalent to the exclusive-or (exclusive disjunction) binary logic operation. In this case it can be used for only very simple inputs and outputs, such as 1s and 0s.
In digital communications, differential coding is a technique used to provide unambiguous signal reception when using some types of modulation. It makes transmissible data dependent on both the current and previous signal (or symbol) states. The common types of modulation that may be used with differential coding include phase-shift keying and ...
GF (2) (also denoted , Z/2Z or ) is the finite field with two elements. [1][a] GF (2) is the field with the smallest possible number of elements, and is unique if the additive identity and the multiplicative identity are denoted respectively 0 and 1, as usual. The elements of GF (2) may be identified with the two possible values of a bit and to ...
The binary operation defined above ... although one ends up with a group for a final answer instead of a number because groups have ... with addition modulo 2. ...