enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Divide-and-conquer eigenvalue algorithm - Wikipedia

    en.wikipedia.org/wiki/Divide-and-conquer_eigen...

    The remainder of the divide step is to solve for the eigenvalues (and if desired the eigenvectors) of ^ and ^, that is to find the diagonalizations ^ = and ^ =. This can be accomplished with recursive calls to the divide-and-conquer algorithm, although practical implementations often switch to the QR algorithm for small enough submatrices.

  3. LU decomposition - Wikipedia

    en.wikipedia.org/wiki/LU_decomposition

    In matrix inversion however, instead of vector b, we have matrix B, where B is an n-by-p matrix, so that we are trying to find a matrix X (also a n-by-p matrix): = =. We can use the same algorithm presented earlier to solve for each column of matrix X. Now suppose that B is the identity matrix of size n.

  4. Eigenvalue algorithm - Wikipedia

    en.wikipedia.org/wiki/Eigenvalue_algorithm

    Given an n × n square matrix A of real or complex numbers, an eigenvalue λ and its associated generalized eigenvector v are a pair obeying the relation [1] =,where v is a nonzero n × 1 column vector, I is the n × n identity matrix, k is a positive integer, and both λ and v are allowed to be complex even when A is real.l When k = 1, the vector is called simply an eigenvector, and the pair ...

  5. QR decomposition - Wikipedia

    en.wikipedia.org/wiki/QR_decomposition

    More generally, we can factor a complex m×n matrix A, with m ≥ n, as the product of an m×m unitary matrix Q and an m×n upper triangular matrix R.As the bottom (m−n) rows of an m×n upper triangular matrix consist entirely of zeroes, it is often useful to partition R, or both R and Q:

  6. Euclidean algorithm - Wikipedia

    en.wikipedia.org/wiki/Euclidean_algorithm

    The computational expense per step is associated chiefly with finding q k, since the remainder r k can be calculated quickly from r k−2, r k−1, and q k. r k = r k−2 − q k r k−1. The computational expense of dividing h-bit numbers scales as O(h(ℓ + 1)), where ℓ is the length of the quotient. [93]

  7. Remainder - Wikipedia

    en.wikipedia.org/wiki/Remainder

    and −2 is the least absolute remainder. In the division of 42 by 5, we have: 42 = 8 × 5 + 2, and since 2 < 5/2, 2 is both the least positive remainder and the least absolute remainder. In these examples, the (negative) least absolute remainder is obtained from the least positive remainder by subtracting 5, which is d. This holds in general.

  8. Kronecker product - Wikipedia

    en.wikipedia.org/wiki/Kronecker_product

    If A is an m × n matrix and B is a p × q matrix, then the Kronecker product A ⊗ B is the pm × qn block matrix: = [], more explicitly: = []. Using / / and % to denote truncating integer division and remainder, respectively, and numbering the matrix elements starting from 0, one obtains

  9. Newton's method - Wikipedia

    en.wikipedia.org/wiki/Newton's_method

    An important application is Newton–Raphson division, which can be used to quickly find the reciprocal of a number a, using only multiplication and subtraction, that is to say the number x such that ⁠ 1 / x ⁠ = a. We can rephrase that as finding the zero of f(x) = ⁠ 1 / x ⁠ − a. We have f ′ (x) = − ⁠ 1 / x 2 ⁠. Newton's ...