Search results
Results from the WOW.Com Content Network
In C++, associative containers are a group of class templates in the standard library of the C++ programming language that implement ordered associative arrays. [1] Being templates, they can be used to store arbitrary elements, such as integers or custom classes.
In C++, the std::map class is templated which allows the data types of keys and values to be different for different map instances. For a given instance of the map class the keys must be of the same base type. The same must be true for all of the values.
In computer science, a multimap (sometimes also multihash, multidict or multidictionary) is a generalization of a map or associative array abstract data type in which more than one value may be associated with and returned for a given key. Both map and multimap are particular cases of containers (for example, see C++ Standard Template Library ...
Because they are in order, tree-based maps can also satisfy range queries (find all values between two bounds) whereas a hashmap can only find exact values. However, hash tables have a much better average-case time complexity than self-balancing binary search trees of O(1), and their worst-case performance is highly unlikely when a good hash ...
Due to their usefulness, they were later included in several other implementations of the C++ Standard Library (e.g., the GNU Compiler Collection's (GCC) libstdc++ [2] and the Visual C++ (MSVC) standard library). The hash_* class templates were proposed into C++ Technical Report 1 (C++ TR1) and were accepted under names unordered_*. [3]
PAM (Parallel Augmented Maps) is an open-source parallel C++ library implementing the interface for sequence, ordered sets, ordered maps, and augmented maps. [1] The library is available on GitHub. It uses the underlying balanced binary tree structure using join-based algorithms . [ 1 ]
Therefore, compilers will attempt to transform the first form into the second; this type of optimization is known as map fusion and is the functional analog of loop fusion. [2] Map functions can be and often are defined in terms of a fold such as foldr, which means one can do a map-fold fusion: foldr f z . map g is equivalent to foldr (f .
When used in this sense, range is defined as "a pair of begin/end iterators packed together". [1] It is argued [1] that "Ranges are a superior abstraction" (compared to iterators) for several reasons, including better safety. In particular, such ranges are supported in C++20, [2] Boost C++ Libraries [3] and the D standard library. [4]