Search results
Results from the WOW.Com Content Network
The Lyapunov equation, named after the Russian mathematician Aleksandr Lyapunov, is a matrix equation used in the stability analysis of linear dynamical systems. [1] [2]In particular, the discrete-time Lyapunov equation (also known as Stein equation) for is
The paradigmatic case is the stability of the origin under the linear autonomous differential equation ˙ = where = [] and is a 2-by-2 matrix. We would sometimes perform change-of-basis by X ′ = C X {\displaystyle X'=CX} for some invertible matrix C {\displaystyle C} , which gives X ˙ ′ = C − 1 A C X ′ {\displaystyle {\dot {X}}'=C^{-1 ...
That is, if x belongs to the interior of its stable manifold, it is asymptotically stable if it is both attractive and stable. (There are examples showing that attractivity does not imply asymptotic stability. [9] [10] [11] Such examples are easy to create using homoclinic connections.)
The exponential of a Metzler (or quasipositive) matrix is a nonnegative matrix because of the corresponding property for the exponential of a nonnegative matrix. This is natural, once one observes that the generator matrices of continuous-time Markov chains are always Metzler matrices, and that probability distributions are always non-negative.
Routh–Hurwitz stability criterion; Vakhitov–Kolokolov stability criterion; Barkhausen stability criterion; Stability may also be determined by means of root locus analysis. Although the concept of stability is general, there are several narrower definitions through which it may be assessed: BIBO stability; Linear stability; Lyapunov stability
Von Neumann stability analysis is a commonly used procedure for the stability analysis of finite difference schemes as applied to linear partial differential equations. These results do not hold for nonlinear PDEs, where a general, consistent definition of stability is complicated by many properties absent in linear equations.
The Nyquist plot for () = + + with s = jω.. In control theory and stability theory, the Nyquist stability criterion or Strecker–Nyquist stability criterion, independently discovered by the German electrical engineer Felix Strecker [] at Siemens in 1930 [1] [2] [3] and the Swedish-American electrical engineer Harry Nyquist at Bell Telephone Laboratories in 1932, [4] is a graphical technique ...
Stable polynomials arise in control theory and in mathematical theory of differential and difference equations. A linear, time-invariant system (see LTI system theory) is said to be BIBO stable if every bounded input produces bounded output. A linear system is BIBO stable if its characteristic polynomial is stable.