Search results
Results from the WOW.Com Content Network
Pandas supports hierarchical indices with multiple values per data point. An index with this structure, called a "MultiIndex", allows a single DataFrame to represent multiple dimensions, similar to a pivot table in Microsoft Excel. [4]: 147–148 Each level of a MultiIndex can be given a unique name.
Comma-separated values (CSV) is a text file format that uses commas to separate values, and newlines to separate records. A CSV file stores tabular data (numbers and text) in plain text, where each line of the file typically represents one data record. Each record consists of the same number of fields, and these are separated by commas in the ...
The Pandas and Polars Python libraries implement the Pearson correlation coefficient calculation as the default option for the methods pandas.DataFrame.corr and polars.corr, respectively. Wolfram Mathematica via the Correlation function, or (with the P value) with CorrelationTest. The Boost C++ library via the correlation_coefficient function.
Excel pivot tables include the feature to directly query an online analytical processing (OLAP) server for retrieving data instead of getting the data from an Excel spreadsheet. On this configuration, a pivot table is a simple client of an OLAP server.
The word2vec algorithm estimates these representations by modeling text in a large corpus. Once trained, such a model can detect synonymous words or suggest additional words for a partial sentence. Word2vec was developed by Tomáš Mikolov and colleagues at Google and published in 2013.
Pointers are used to pass parameters by reference. This is useful if the programmer wants a function's modifications to a parameter to be visible to the function's caller. This is also useful for returning multiple values from a function. Pointers can also be used to allocate and deallocate dynamic variables and arrays in memory. Since a ...
Deep learning algorithms discover multiple levels of representation, or a hierarchy of features, with higher-level, more abstract features defined in terms of (or generating) lower-level features. It has been argued that an intelligent machine is one that learns a representation that disentangles the underlying factors of variation that explain ...
The moment generating function of a real random variable is the expected value of , as a function of the real parameter . For a normal distribution with density f {\textstyle f} , mean μ {\textstyle \mu } and variance σ 2 {\textstyle \sigma ^{2}} , the moment generating function exists and is equal to