Search results
Results from the WOW.Com Content Network
The structure of sodium oxide has been determined by X-ray crystallography.Most alkali metal oxides M 2 O (M = Li, Na, K, Rb) crystallise in the antifluorite structure.In this motif the positions of the anions and cations are reversed relative to their positions in CaF 2, with sodium ions tetrahedrally coordinated to 4 oxide ions and oxide cubically coordinated to 8 sodium ions.
Sodium atoms have 11 electrons, one more than the stable configuration of the noble gas neon. As a result, sodium usually forms ionic compounds involving the Na + cation. [1] Sodium is a reactive alkali metal and is much more stable in ionic compounds. It can also form intermetallic compounds and organosodium compounds.
The −1 occurs because each carbon is bonded to one hydrogen atom (a less electronegative element), and the − 1 / 5 because the total ionic charge of −1 is divided among five equivalent carbons. Again this can be described as a resonance hybrid of five equivalent structures, each having four carbons with oxidation state −1 and ...
Example: sodium chloride, potassium oxide, or calcium carbonate. When the metal has more than one possible ionic charge or oxidation number the name becomes ambiguous. In these cases the oxidation number (the same as the charge) of the metal ion is represented by a Roman numeral in parentheses immediately following the metal ion name.
Sodium cobalt oxide, also called sodium cobaltate, is any of a range of compounds of sodium, cobalt, and oxygen with the general formula Na x CoO 2 for 0 < x ≤ 1. The name is also used for hydrated forms of those compounds, Na x CoO 2 ·y H 2 O. The anhydrous compound was first synthesized in the 1970s. [2]
Sodium methoxide is prepared by treating methanol with sodium: 2 Na + 2 CH 3 OH → 2 CH 3 ONa + H 2. The reaction is so exothermic that ignition is possible. The resulting solution, which is colorless, is often used as a source of sodium methoxide, but the pure material can be isolated by evaporation followed by heating to remove residual methanol.
Extreme acidity, heat, and dehydrating conditions are usually required. Other hydrocarbon oxonium ions are formed by protonation or alkylation of alcohols or ethers (R−C− + −R 1 R 2). Secondary oxonium ions have the formula R 2 OH +, an example being protonated ethers. Tertiary oxonium ions have the formula R 3 O +, an example being ...
A classic case is sodium methoxide produced by the addition of sodium metal to methanol: [citation needed] 2 CH 3 OH + 2 Na → 2 CH 3 ONa + H 2. Other alkali metals can be used in place of sodium, and most alcohols can be used in place of methanol. Generally, the alcohol is used in excess and left to be used as a solvent in the reaction.