enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Eulerian path - Wikipedia

    en.wikipedia.org/wiki/Eulerian_path

    An Eulerian trail, [note 1] or Euler walk, in an undirected graph is a walk that uses each edge exactly once. If such a walk exists, the graph is called traversable or semi-eulerian. [3] An Eulerian cycle, [note 1] also called an Eulerian circuit or Euler tour, in an undirected graph is a cycle that uses each edge exactly once

  3. Euler tour technique - Wikipedia

    en.wikipedia.org/wiki/Euler_tour_technique

    Euler tour of a tree, with edges labeled to show the order in which they are traversed by the tour. The Euler tour technique (ETT), named after Leonhard Euler, is a method in graph theory for representing trees.

  4. Cycle (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Cycle_(graph_theory)

    In graph theory, a cycle in a graph is a non-empty trail in which only the first and last vertices are equal. A directed cycle in a directed graph is a non-empty directed trail in which only the first and last vertices are equal. A graph without cycles is called an acyclic graph. A directed graph without directed cycles is called a directed ...

  5. Glossary of graph theory - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_graph_theory

    A circuit may refer to a closed trail or an element of the cycle space (an Eulerian spanning subgraph). The circuit rank of a graph is the dimension of its cycle space. circumference The circumference of a graph is the length of its longest simple cycle. The graph is Hamiltonian if and only if its circumference equals its order.

  6. BEST theorem - Wikipedia

    en.wikipedia.org/wiki/BEST_theorem

    An Eulerian circuit is a directed closed trail that visits each edge exactly once. In 1736, Euler showed that G has an Eulerian circuit if and only if G is connected and the indegree is equal to outdegree at every vertex. In this case G is called Eulerian. We denote the indegree of a vertex v by deg(v).

  7. Seven Bridges of Königsberg - Wikipedia

    en.wikipedia.org/wiki/Seven_Bridges_of_Königsberg

    Therefore, an Eulerian path is now possible, but it must begin on one island and end on the other. [9] The University of Canterbury in Christchurch has incorporated a model of the bridges into a grass area between the old Physical Sciences Library and the Erskine Building, housing the Departments of Mathematics, Statistics and Computer Science ...

  8. 2-factor theorem - Wikipedia

    en.wikipedia.org/wiki/2-factor_theorem

    In order to prove this generalized form of the theorem, Petersen first proved that a 4-regular graph can be factorized into two 2-factors by taking alternate edges in a Eulerian trail. He noted that the same technique used for the 4-regular graph yields a factorization of a 2 k {\displaystyle 2k} -regular graph into two k {\displaystyle k ...

  9. Path (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Path_(graph_theory)

    A trail is a walk in which all edges are distinct. [2] A path is a trail in which all vertices (and therefore also all edges) are distinct. [2] If w = (e 1, e 2, …, e n − 1) is a finite walk with vertex sequence (v 1, v 2, …, v n) then w is said to be a walk from v 1 to v n. Similarly for a trail or a path.