enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. 3-sphere - Wikipedia

    en.wikipedia.org/wiki/3-sphere

    It is called a 3-sphere because topologically, the surface itself is 3-dimensional, even though it is curved into the 4th dimension. For example, when traveling on a 3-sphere, you can go north and south, east and west, or along a 3rd set of cardinal directions. This means that a 3-sphere is an example of a 3-manifold.

  3. Point groups in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Point_groups_in_three...

    In geometry, a point group in three dimensions is an isometry group in three dimensions that leaves the origin fixed, or correspondingly, an isometry group of a sphere.It is a subgroup of the orthogonal group O(3), the group of all isometries that leave the origin fixed, or correspondingly, the group of orthogonal matrices.

  4. Three-dimensional space - Wikipedia

    en.wikipedia.org/wiki/Three-dimensional_space

    Another type of sphere arises from a 4-ball, whose three-dimensional surface is the 3-sphere: points equidistant to the origin of the euclidean space R 4. If a point has coordinates, P ( x , y , z , w ) , then x 2 + y 2 + z 2 + w 2 = 1 characterizes those points on the unit 3-sphere centered at the origin.

  5. Sphere - Wikipedia

    en.wikipedia.org/wiki/Sphere

    The ordinary sphere is a 2-sphere, because it is a 2-dimensional surface which is embedded in 3-dimensional space. In topology, the n-sphere is an example of a compact topological manifold without boundary. A topological sphere need not be smooth; if it is smooth, it need not be diffeomorphic to the Euclidean sphere (an exotic sphere).

  6. 3-manifold - Wikipedia

    en.wikipedia.org/wiki/3-manifold

    The 3-sphere is an especially important 3-manifold because of the now-proven Poincaré conjecture. Originally conjectured by Henri Poincaré, the theorem concerns a space that locally looks like ordinary three-dimensional space but is connected, finite in size, and lacks any boundary (a closed 3-manifold).

  7. Surface (topology) - Wikipedia

    en.wikipedia.org/wiki/Surface_(topology)

    Examples of closed surfaces include the sphere, the torus and the Klein bottle. Examples of non-closed surfaces include an open disk (which is a sphere with a puncture), a cylinder (which is a sphere with two punctures), and the Möbius strip. A surface embedded in three-dimensional space is closed

  8. Rotation formalisms in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotation_formalisms_in...

    This representation is a higher-dimensional analog of the gnomonic projection, mapping unit quaternions from a 3-sphere onto the 3-dimensional pure-vector hyperplane. It has a discontinuity at 180° ( π radians): as any rotation vector r tends to an angle of π radians, its tangent tends to infinity.

  9. Homotopy groups of spheres - Wikipedia

    en.wikipedia.org/wiki/Homotopy_groups_of_spheres

    An ordinary sphere in three-dimensional space—the surface, not the solid ball—is just one example of what a sphere means in topology. Geometry defines a sphere rigidly, as a shape. Here are some alternatives. Implicit surface: x 2 0 + x 2 1 + x 2 2 = 1; This is the set of points in 3-dimensional Euclidean space found