Search results
Results from the WOW.Com Content Network
Brunauer–Emmett–Teller (BET) theory aims to explain the physical adsorption of gas molecules on a solid surface and serves as the basis for an important analysis technique for the measurement of the specific surface area of materials. The observations are very often referred to as physical adsorption or physisorption.
Brunauer, Emmett and Teller's model of multilayer adsorption is a random distribution of molecules on the material surface. Adsorption is the adhesion [1] of atoms, ions or molecules from a gas, liquid or dissolved solid to a surface. [2] This process creates a film of the adsorbate on the surface of the adsorbent.
Inherent within this model, the following assumptions [5] are valid specifically for the simplest case: the adsorption of a single adsorbate onto a series of equivalent sites onto the surface of the solid. The surface containing the adsorbing sites is a perfectly flat plane with no corrugations (assume the surface is homogeneous).
The Langmuir model of adsorption [2] assumes . The maximum coverage is one adsorbate molecule per substrate site. Independent and equivalent adsorption sites. This model is the simplest useful approximation that still retains the dependence of the adsorption rate on the coverage, and in the simplest case, precursor states are not considered.
Reactions on surfaces are reactions in which at least one of the steps of the reaction mechanism is the adsorption of one or more reactants. The mechanisms for these reactions, and the rate equations are of extreme importance for heterogeneous catalysis .
The Gibbs adsorption isotherm for multicomponent systems is an equation used to relate the changes in concentration of a component in contact with a surface with changes in the surface tension, which results in a corresponding change in surface energy. For a binary system, the Gibbs adsorption equation in terms of surface excess is
Adsorption occurs at the liquid–liquid, liquid–vapor, and liquid-solid interfaces. The transport of molecules to the surface occurs due to a combination of diffusion and convective transport. According to the Langmuir or Avrami kinetic model the rate of deposition onto the surface is proportional to the free space of the surface. [7]
Adsorption is the process by which a gas (or solution) phase molecule (the adsorbate) binds to solid (or liquid) surface atoms (the adsorbent). The reverse of adsorption is desorption, the adsorbate splitting from adsorbent. In a reaction facilitated by heterogeneous catalysis, the catalyst is the adsorbent and the reactants are the adsorbate.