Search results
Results from the WOW.Com Content Network
On the diagram one can see the quantity called capacity for entropy. This quantity is the amount of entropy that may be increased without changing an internal energy or increasing its volume. [9] In other words, it is a difference between maximum possible, under assumed conditions, entropy and its actual entropy.
Entropy is one of the few quantities in the physical sciences that require a particular direction for time, sometimes called an arrow of time. As one goes "forward" in time, the second law of thermodynamics says, the entropy of an isolated system can increase, but not decrease. Thus, entropy measurement is a way of distinguishing the past from ...
However, as calculated in the example, the entropy of the system of ice and water has increased more than the entropy of the surrounding room has decreased. In an isolated system such as the room and ice water taken together, the dispersal of energy from warmer to cooler always results in a net increase in entropy. Thus, when the "universe" of ...
Owing to these early developments, the typical example of entropy change ΔS is that associated with phase change. In solids, for example, which are typically ordered on the molecular scale, usually have smaller entropy than liquids, and liquids have smaller entropy than gases and colder gases have smaller entropy than hotter gases.
In physics, Loschmidt's paradox (named for J.J. Loschmidt), also known as the reversibility paradox, irreversibility paradox, or Umkehreinwand (from German 'reversal objection'), [1] is the objection that it should not be possible to deduce an irreversible process from time-symmetric dynamics.
Since the demon and the gas are interacting, we must consider the total entropy of the gas and the demon combined. The expenditure of energy by the demon will cause an increase in the entropy of the demon, which will be larger than the lowering of the entropy of the gas. In 1960, Rolf Landauer raised an exception to this argument.
Other authors defining entropy in a way that embodies energy dispersal are Cecie Starr [22] and Andrew Scott. [23] In a 1996 article, the physicist Harvey S. Leff set out what he called "the spreading and sharing of energy." [24] Another physicist, Daniel F. Styer, published an article in 2000 showing that "entropy as disorder" was inadequate. [25]
Research concerning the relationship between the thermodynamic quantity entropy and both the origin and evolution of life began around the turn of the 20th century. In 1910 American historian Henry Adams printed and distributed to university libraries and history professors the small volume A Letter to American Teachers of History proposing a theory of history based on the second law of ...