enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Powell's dog leg method - Wikipedia

    en.wikipedia.org/wiki/Powell's_dog_leg_method

    If the Cauchy point is inside the trust region, the new solution is taken at the intersection between the trust region boundary and the line joining the Cauchy point and the Gauss-Newton step (dog leg step). [2] The name of the method derives from the resemblance between the construction of the dog leg step and the shape of a dogleg hole in ...

  3. Trust region - Wikipedia

    en.wikipedia.org/wiki/Trust_region

    The general idea behind trust region methods is known by many names; the earliest use of the term seems to be by Sorensen (1982). [1] A popular textbook by Fletcher (1980) calls these algorithms restricted-step methods. [2]

  4. Levenberg–Marquardt algorithm - Wikipedia

    en.wikipedia.org/wiki/Levenberg–Marquardt...

    LMA can also be viewed as Gauss–Newton using a trust region approach. The algorithm was first published in 1944 by Kenneth Levenberg, [1] while working at the Frankford Army Arsenal. It was rediscovered in 1963 by Donald Marquardt, [2] who worked as a statistician at DuPont, and independently by Girard, [3] Wynne [4] and Morrison. [5]

  5. Gauss–Newton algorithm - Wikipedia

    en.wikipedia.org/wiki/Gauss–Newton_algorithm

    In a quasi-Newton method, such as that due to Davidon, Fletcher and Powell or Broyden–Fletcher–Goldfarb–Shanno (BFGS method) an estimate of the full Hessian is built up numerically using first derivatives only so that after n refinement cycles the method closely approximates to Newton's method in performance. Note that quasi-Newton ...

  6. Powell's method - Wikipedia

    en.wikipedia.org/wiki/Powell's_method

    Powell's method, strictly Powell's conjugate direction method, is an algorithm proposed by Michael J. D. Powell for finding a local minimum of a function. The function need not be differentiable, and no derivatives are taken. The function must be a real-valued function of a fixed number of real-valued inputs.

  7. Proximal policy optimization - Wikipedia

    en.wikipedia.org/wiki/Proximal_Policy_Optimization

    It addressed the instability issue of another algorithm, the Deep Q-Network (DQN), by using the trust region method to limit the KL divergence between the old and new policies. However, TRPO uses the Hessian matrix (a matrix of second derivatives) to enforce the trust region, but the Hessian is inefficient for large-scale problems. [1]

  8. Davidon–Fletcher–Powell formula - Wikipedia

    en.wikipedia.org/wiki/Davidon–Fletcher–Powell...

    It was the first quasi-Newton method to generalize the secant method to a multidimensional problem. This update maintains the symmetry and positive definiteness of the Hessian matrix . Given a function f ( x ) {\displaystyle f(x)} , its gradient ( ∇ f {\displaystyle \nabla f} ), and positive-definite Hessian matrix B {\displaystyle B} , the ...

  9. Numerical stability - Wikipedia

    en.wikipedia.org/wiki/Numerical_stability

    One such method is the famous Babylonian method, which is given by x k+1 = (x k + 2/x k)/2. Another method, called "method X", is given by x k+1 = (x k 22) 2 + x k. [note 1] A few iterations of each scheme are calculated in table form below, with initial guesses x 0 = 1.4 and x 0 = 1.42.