enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. n-sphere - Wikipedia

    en.wikipedia.org/wiki/N-sphere

    The above ⁠ ⁠-sphere exists in ⁠ (+) ⁠-dimensional Euclidean space and is an example of an ⁠ ⁠-manifold. The volume form ⁠ ω {\displaystyle \omega } ⁠ of an ⁠ n {\displaystyle n} ⁠ -sphere of radius ⁠ r {\displaystyle r} ⁠ is given by

  3. List of coordinate charts - Wikipedia

    en.wikipedia.org/wiki/List_of_coordinate_charts

    3-sphere S 3: Polar chart. Stereographic chart Mercator chart. Euclidean spaces: n-dimensional Euclidean space E n: Cartesian chart: Euclidean plane E 2: Bipolar coordinates. Biangular coordinates Two-center bipolar coordinates. Euclidean space E 3: Polar spherical chart. Cylindrical chart. Elliptical cylindrical, hyperbolic cylindrical ...

  4. Manifold - Wikipedia

    en.wikipedia.org/wiki/Manifold

    A manifold can be constructed by giving a collection of coordinate charts, that is, a covering by open sets with homeomorphisms to a Euclidean space, and patching functions [clarification needed]: homeomorphisms from one region of Euclidean space to another region if they correspond to the same part of the manifold in two different coordinate ...

  5. Riemannian manifold - Wikipedia

    en.wikipedia.org/wiki/Riemannian_manifold

    By selecting this open set to be contained in a coordinate chart, one can reduce the claim to the well-known fact that, in Euclidean geometry, the shortest curve between two points is a line. In particular, as seen by the Euclidean geometry of a coordinate chart around p , any curve from p to q must first pass though a certain "inner radius."

  6. Isotropic coordinates - Wikipedia

    en.wikipedia.org/wiki/Isotropic_coordinates

    In an isotropic chart (on a static spherically symmetric spacetime), the metric (aka line element) takes the form = + (+ (+ ⁡ ())), < <, < <, < <, < < Depending on context, it may be appropriate to regard , as undetermined functions of the radial coordinate (for example, in deriving an exact static spherically symmetric solution of the Einstein field equation).

  7. Kissing number - Wikipedia

    en.wikipedia.org/wiki/Kissing_number

    For a given sphere packing (arrangement of spheres) in a given space, a kissing number can also be defined for each individual sphere as the number of spheres it touches. For a lattice packing the kissing number is the same for every sphere, but for an arbitrary sphere packing the kissing number may vary from one sphere to another.

  8. Conformal geometry - Wikipedia

    en.wikipedia.org/wiki/Conformal_geometry

    An embedding of the Euclidean sphere into N +, as in the previous section, determines a conformal scale on S. Conversely, any conformal scale on S is given by such an embedding. Thus the line bundle N + → S is identified with the bundle of conformal scales on S : to give a section of this bundle is tantamount to specifying a metric in the ...

  9. Homotopy groups of spheres - Wikipedia

    en.wikipedia.org/wiki/Homotopy_groups_of_spheres

    The same idea applies for any dimension n; the equation x 2 0 + x 2 1 + ⋯ + x 2 n = 1 produces the n-sphere as a geometric object in (n + 1)-dimensional space. For example, the 1-sphere S 1 is a circle. [2] Disk with collapsed rim: written in topology as D 2 /S 1; This construction moves from geometry to pure topology.