Search results
Results from the WOW.Com Content Network
The above -sphere exists in (+) -dimensional Euclidean space and is an example of an -manifold. The volume form ω {\displaystyle \omega } of an n {\displaystyle n} -sphere of radius r {\displaystyle r} is given by
The same idea applies for any dimension n; the equation x 2 0 + x 2 1 + ⋯ + x 2 n = 1 produces the n-sphere as a geometric object in (n + 1)-dimensional space. For example, the 1-sphere S 1 is a circle. [2] Disk with collapsed rim: written in topology as D 2 /S 1; This construction moves from geometry to pure topology.
Charts n-spheres: n-sphere S n: Hopf chart. Hyperspherical coordinates. Sphere S 2: Spherical coordinates. Stereographic chart Central projection chart Axial projection chart Mercator chart. 3-sphere S 3: Polar chart. Stereographic chart Mercator chart. Euclidean spaces: n-dimensional Euclidean space E n: Cartesian chart: Euclidean plane E 2 ...
By selecting this open set to be contained in a coordinate chart, one can reduce the claim to the well-known fact that, in Euclidean geometry, the shortest curve between two points is a line. In particular, as seen by the Euclidean geometry of a coordinate chart around p , any curve from p to q must first pass though a certain "inner radius."
An embedding of the Euclidean sphere into N +, as in the previous section, determines a conformal scale on S. Conversely, any conformal scale on S is given by such an embedding. Thus the line bundle N + → S is identified with the bundle of conformal scales on S : to give a section of this bundle is tantamount to specifying a metric in the ...
In mathematics, a unit sphere is a sphere of unit radius: the set of points at Euclidean distance 1 from some center point in three-dimensional space. More generally, the unit n {\displaystyle n} -sphere is an n {\displaystyle n} -sphere of unit radius in ( n + 1 ) {\displaystyle (n+1)} - dimensional Euclidean space ; the unit circle is a ...
For example, one sphere that is described in Cartesian coordinates with the equation x 2 + y 2 + z 2 = c 2 can be described in spherical coordinates by the simple equation r = c. (In this system—shown here in the mathematics convention—the sphere is adapted as a unit sphere, where the radius is set to unity and then can generally be ignored ...
In geometry, many uniform tilings on sphere, euclidean plane, and hyperbolic plane can be made by Wythoff construction within a fundamental triangle, (p q r), defined by internal angles as π/p, π/q, and π/r. Special cases are right triangles (p q 2).